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ABSTRACT

The staggering complexity of modern biomedical research has intensified the aspiration for a generalist “Biomedical World
Model”, yet current Al agents remain constrained by static capabilities and a lack of self-evolution mechanisms. To bridge
this gap, we present STELLA, a self-evolving multimodal agent designed to progressively refine its computational reasoning
and physical execution through interaction. STELLA operates via a collaborative multi-agent framework (comprising Manager,
Developer, Critic, Critic, and Tool Creation agents) that continuously updates reasoning templates and autonomously expands
a dynamic “Tool Ocean”. We demonstrate STELLA’s capabilities on the created Tool Creation Benchmark, where it attains
a score of 4.01/5 with 100% task completion, significantly outperforming state-of-the-art models including GPT-5, Claude 4
Opus, and Biomni. Beyond computational metrics, STELLA drives experimentally validated scientific discovery. In oncology,
the agent identified Butyrophilin Subfamily 3 Member A1 (BTN3A1) as a novel negative regulator of natural killer (NK) cell
function in acute myeloid leukemia (AML), verified via CRISPR knockout studies. In protein engineering, STELLA orchestrated
a complete directed evolution workflow for the enzyme strictosidine synthase, identifying variants, notably M276L, exhibiting
more than a two-fold improvement in catalytic activity. Finally, the system extends to physical laboratory automation by training
Vision-Language-Action (VLA) models through a Decompose-Monitor-Recover mechanism, which increased success rates
from 17% to 82%. By integrating autonomous tool evolution, biological discovery, and robotic control, STELLA offers a blueprint
for a self-evolving world model in the life sciences.

Introduction

Modern biomedical research is defined by a dual reality: immense opportunity coupled with staggering complexity, driven by
rapidly expanding datasets, heterogeneous experimental modalities, and the rapid acceleration of methodology development!?.
This landscape has intensified the long-standing aspiration for a Biomedical World Model—a unified, self-evolving representation
that integrates multimodal knowledge, predictive modeling, and physical interaction to support autonomous scientific discovery>=.
In this work, we present STELLA to advance this goal. STELLA is a self-evolving multimodal agent designed to seamlessly
integrate computational reasoning with wet-lab verification. As illustrated in Fig. 1a, STELLA engages with research tasks by
utilizing reasoning templates for memory, bio-foundation models as tools, and actions ranging from coding to robotic control.
Through this process, feedback from genes, cells, and wet-lab experiments continually updates its internal representations,
facilitating the formation of a world model grounded in real-world verification.

The distinguishing feature of STELLA is its ability to transcend static automation through two novel self-evolution
mechanisms that allow it to become more proficient with experience® . First, rather than reinitiating the process for every task,
STELLA maintains a Template Library of reasoning workflows. This library is dynamically updated with successful strategies,



allowing the system to distill generalizable logic from specific cases and progressively refine its problem-solving patterns.
Second, we replace the conventional fixed toolkit with a Tool Ocean—a dynamic and growing repository of bioinformatics
resources. Unlike static systems constrained by pre-installed packages, STELLA is equipped to autonomously identify, validate,
and integrate new tools and APIs in response to evolving research demands. Together, these mechanisms ensure that STELLA’s
knowledge base and technical capabilities continuously expand as it interacts with the scientific environment.

To implement these evolutionary mechanisms, STELLA employs a collaborative multi-agent framework comprising four
specialized agents (Manager, Developer, Critic, and Tool Creation). The workflow begins with the Manager Agent, which
retrieves relevant strategies from the Template Library to coordinate a multi-step reasoning plan. The Developer Agent then
executes these steps by generating and running Python scripts for bioinformatics analyses. Crucially, this process is governed by
arigorous feedback loop: the Critic Agent continuously assesses intermediate results to identify flaws, prompting the Developer
to refine its code until the objective is achieved®°. Meanwhile, the Tool Creation Agent operates in the background to populate
the Tool Ocean, actively discovering and wrapping new tools required by the current workflow. This architecture ensures that
STELLA does not merely execute commands, but engages in a robust, feedback-driven cycle of reasoning, execution, and
self-correction.

To assess STELLA’s capabilities, we first evaluated it on rigorous public benchmarks. On the challenging Humanity’s
Last Exam Biomedicine benchmark!®, STELLA achieved an accuracy of 32%, surpassing all state-of-the-art generalist models
(including GPT-5'!, Gemini 2.5 Pro'?, and DeepSeek R1'?) and the specialized agent Biomni'#. Similarly, on the LAB Bench
suite’”, STELLA demonstrated strong generalization with top-tier performance on both DBQA (61%) and LitQA (65%). To
further probe the capacity for autonomous tool use, we introduced the Tool Creation Benchmark, which comprises 47 tasks
across 10 biomedical domains. STELLA reached the highest mean score of 4.01/5 while maintaining a 100% task completion
rate. This performance establishes a substantial lead over all baselines: the nearest competitor, the specialized agent Biomni,
achieved a score of 3.33/5 despite also maintaining 100% completion. Generalist foundation models achieved scores lower
than 3.0 (e.g., Gemini 2.5 Pro achieved 2.99/5 with an 89.4% completion rate). These results highlight the advantage of a
self-evolving agent that integrates tool creation, computational analysis, and language-driven reasoning for complex biomedical
tasks.

Beyond standardized evaluation, a genuine biomedical world model must demonstrate the capacity to generate novel insights
amenable to wet-lab verification. To validate this predictive capability, we first applied STELLA to identify previously
unreported negative regulators of natural killer (NK) cell function in acute myeloid leukemia (AML). By synthesizing
data from molecular databases, literature, and regulatory networks, STELLA prioritized Butyrophilin Subfamily 3 Member
A1l (BTN3A1) as the most promising candidate for therapeutic targeting. CRISPR (Clustered Regularly Interspaced Short
Palindromic Repeats) knockout studies in the NK92MI cell line experimentally validated this finding. Loss of BTN3A1
consistently increased NK cell cytotoxicity across four leukemia models and enhanced degranulation as measured by CD107a
expression. These results demonstrate that STELLA can autonomously propose hypotheses that lead to validated biological
findings, highlighting its ability to uncover therapeutically relevant mechanisms.

We further examined whether STELLA could achieve closed-loop optimization between computational design and wet-lab
verification by supporting multi-round enzyme engineering. Using strictosidine synthase as a target system, STELLA
generated a complete directed evolution workflow that integrated structural modeling, virtual mutagenesis, activity prediction
(via a fine-tuned protein language model), and stability filtering. Two iterative rounds of design and experimental testing
identified three mutations with markedly increased catalytic activity. Notably, the M276L variant improved product formation
by more than two-fold, while the V176F and M276R variants also displayed significant improvements. Structural analysis
attributed these enhancements to strengthened hydrogen bonding and a more preorganized catalytic pocket, providing a
mechanistic basis for the observed improvements. These wet-lab results validate the generality of STELLA’s design agent and
confirm its ability to drive experimentally actionable enzyme optimization.

Finally, to establish the biomedical world model’s physical grounding, STELLA extends beyond computational tasks to
coordinate complex laboratory workflows through Vision-Language-Action (VLA) models. Biomedical robotics presents
unique challenges involving heterogeneous interfaces, ambiguous materials, deformable containers, and strictly constrained
procedures that demand high precision'®!8. To address these, STELLA adopts a Decompose-Monitor-Recover mechanism
that segments long-horizon tasks into interpretable subtasks, continuously monitors execution using multimodal perception, and
invokes specialized tools to recover from failures. We evaluated this approach on the Autobio benchmark'®, encompassing tasks
requiring liquid handling, dual-arm coordination, and contact-rich tube placement. STELLA consistently improved success
rates with accumulated recovery experience, significantly outperforming supervised fine-tuning (SFT) and online reinforcement
learning (RL) baselines across multiple base architectures (07, 758, and RDT'9). For example, success on the my backbone
increased from 17% to 82%. These results demonstrate the critical role of active, self-evolving feedback loops in developing
physical intelligence, marking a crucial step toward a biomedical world model grounded in real-world interaction.
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Figure 1. STELLA: A self-evolving multimodal agent system towards biomedical world model. a, Conceptual view of
how STELLA interacts with the biomedical research environment. STELLA uses memory (reasoning templates), a suite of
biological models as tools, and multimodal actions, including coding, Vision-Language Models (VLMs), and
Vision-Language-Action (VLA) models to engage with genes, cells, tissues, patients, and wet lab experiments. Feedback from
these interactions updates STELLA’s internal templates and tools and facilitates the formation of a biomedical world model. b,
Representative applications. Top: discovery of natural killer (NK) cell targets for acute myeloid leukemia (AML) therapy
through literature reasoning and wet-lab validation. Middle: enzyme optimization supported by computational structure
modeling and directed evolution experiments. Bottom: training of VLA models for robotic execution of biomedical procedures
and improvement of manipulation performance. ¢, Internal architecture of STELLA. Reasoning templates guide the Manager
Agent through data preprocessing, annotation, analysis and summarization. The Dev Agent executes computational workflows.
The Critic Agent evaluates hypotheses and proposes new analyses or tool creation needs. The Tool Creation Agent continuously
expands the Tool Ocean with new computational tools. Human and experimental feedback closes the loop, enabling
self-evolution across tasks.

Results

STELLA’s Self-evolving Mechanisms for Biomedical Research

A defining feature of STELLA is its dual self-evolving mechanism, which empowers it to learn from experience and continuously
expand its abilities as a Biomedical World Model (Fig. 1a). The first mechanism involves the evolution of its Template
Library. STELLA captures successful multi-step workflows, such as the progression from initial descriptive analysis to a
predictive virtual screen, and abstracts them into high-quality reasoning templates. This process refines STELLA’s strategic
knowledge, enabling it to solve similar problems more efficiently in the future.
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Figure 2. Benchmarking tool creation capability of STELLA. a, Workflow for constructing the tool creation benchmark,
which integrates ten biomedical domains and four major tool categories, with 47 real-world tasks from recent research articles.
b—-c, Distribution of domains and task types across the benchmark. d—e, Overall performance of baseline models and STELLA
on tool creation, reported as mean scores (d) and task completion rates (e). f, Examples of novel tools autonomously created by
STELLA, including disease gene association queries, selective essentiality analysis from CRISPR/RNAI data, non-cutting
enzyme identification, and protein—DNA interface analysis. g, Comparative evaluation of STELLA against frontier LLMs and

agents on widely used external benchmarks (Humanity’s Last Exam: Biomedicine, DBQA, and LitQA), demonstrating superior
accuracy in diverse biomedical reasoning tasks.
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The second, more profound level of evolution is the expansion of the Tool Ocean, a dynamic repository of STELLA’s
executable capabilities. This ocean contains a diverse array of computational tools broadly classified into three main categories:
(1) functions for querying established scientific databases, (2) interfaces for leveraging large-scale foundation models, and
(3) customized analysis tools. The first category provides direct access to critical repositories like PubMed?’, C1invar?!,
and PDB?2. The second allows STELLA to harness state-of-the-art Al, including AlphaFold323 for structure prediction,
scGPT?* for single-cell interpretation, and ESM32 for protein language modeling. The third category consists of specialized
scripts (e.g., for network analysis) and interfaces for wet-lab protocol orchestration and VLA-based real-world interaction.
Together, the refinement of the Template Library and the expansion of the Tool Ocean serve as the foundational engines enabling
STELLA to navigate scientific complexity with growing sophistication.

In the following sections, we will detail how STELLA’s self-evolving framework powers diverse biomedical discovery
(Fig. 1b). First, we present the discovery of novel NK cell targets for AML through computational reasoning and wet-lab
validation. Second, we highlight enzyme optimization achieved through iterative computational modeling and experimental
feedback. Finally, we show the tool-augmented training mechanism of STELLA-VLA for self-improving robotic control,
marking one initial step towards physical intelligence.
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STELLA’s Overall Framework

To operationalize these self-evolving mechanisms, STELLA leverages four key agents (Manager Agent, Dev Agent, Critic Agent,
and Tool Creation Agent) to systematically address complex biomedical research questions (Fig. 1¢). The workflow begins when
the Manager Agent receives a high-level research goal, such as to “uncover the mechanism of acquired chemotherapy resistance
and propose a re-sensitization strategy.” The Manager Agent analyzes this goal and, guided by its reasoning experience
(retrieved from the Template Library), establishes a “Reasoning Pathway”—a strategic plan decomposing the problem into steps
like ‘Differential expression analysis’ and ‘Identify keystone gene’. It assigns initial tasks to the Dev Agent, the computational
workhorse, which creates a self-contained conda environment and executes analysis scripts (e.g., diff_analysis.py).
The results are passed to the Critic Agent for rigorous evaluation. In the chemoresistance example, the Critic might provide
feedback such as: “This hypothesis is correct but not actionable... It describes what changed but not the regulatory logic. We
need to find the ‘keystone’ gene.” This feedback identifies a capability gap. In response, the Manager Agent tasks the Tool
Creation Agent to close this gap. This agent leverages the Tool Ocean described above to build or configure a new tool, such
as a virtual perturbation screening model based on virtual cell states*®. By deploying this new tool, STELLA moves beyond
simple description to mechanistic interpretation, ultimately identifying the transcription factor MTF1 as the regulator of the
resistance network. Currently, STELLA utilizes Claude 4 Sonnet for the Dev and Tool Creation Agents, and Gemini 2.5 Pro for
the Manager and Critic Agents.

Benchmarking Tool Creation and Tool-Augmented Biomedical Reasoning

To systematically benchmark STELLA and leading LLMs/agent systems in domain-appropriate tool creation and tool-augmented
biomedical research, we developed the Tool Creation Benchmark. The benchmark is generated through a structured six-stage
workflow that captures how real scientific tasks arise in biomedical research (Fig. 2a). The process begins with identifying core
biomedical domains and their associated experimental, computational, and database-driven tools, before collecting high-quality
task scenarios from recent research articles. These scenarios reflect authentic scientific operations such as pathway-to-gene
mapping, protein chain-level analysis, and primer design under thermodynamic constraints. Domain experts then refine each
scenario into a precise task prompt with explicit tool intent, clearly defined inputs and outputs, and guidelines that encourage
tool-grounded reasoning. Expected answers are specified in structured formats, with validated reference outputs or accepted
tool results. The final benchmark contains 47 tasks spanning 10 biomedical fields, from molecular biology and protein design to
pharmacology and synthetic biology, as illustrated in Fig. 2b & c. Evaluation uses a five-dimensional rubric that scores technical
accuracy, domain knowledge, analytical reasoning, tool innovation, and communication clarity on a 1-5 scale. This evaluation
design not only measures whether a system produces the correct answer, but also whether it does so through transparent,
reproducible, and tool-grounded reasoning. The tool creation benchmark aims to expose the gap between static LLM knowledge
and the dynamic, tool-grounded reasoning required for genuine scientific discovery.

In Fig. 2d & e, we compared STELLA with a biomedical agent (Biomni'#) and seven leading LLMs (GPT 03?’, GPT-40°8,
Claude 4 Opus?®, GPT-5'", Grok-43", Gemini 2.5 Pro'?, and DeepSeek R1'3) using the same tasks and scoring rubric. STELLA
achieved the highest mean score of 4.01 out of 5 with 100% task completion, outperforming all baselines. Biomni also completed
all tasks but achieved a mean score of 3.33. Among static models, Claude 4 Opus reached 3.26 (100% completion), GPT-5
reached 3.24 (93.6%), GPT 03 reached 3.08 (70.2%), Grok-4 reached 3.05 (70.2%), Gemini 2.5 Pro reached 2.99 (89.4%),
DeepSeek R1 reached 2.98 (100%), and GPT-40 reached 2.60 (100%). Although these models demonstrate strong fluency and
factual recall, they exhibit limitations in tasks requiring tool execution, structured data parsing, or multi-step reasoning. This is
particularly evident in workflows involving external database queries or code-based filters. Grok-4, for example, shows high
variance (standard deviation of 0.77), indicating variability in its reasoning process. STELLA’s largest advantage emerges
in high complexity tasks that require tool composition, API invocation, chained logic, and robust error recovery, where it
consistently produces correct, transparent, and tool-grounded outputs across all task types.

In experiments, we observed that STELLA solves benchmark tasks by dynamically selecting and executing a wide range
of domain-specific tools, including molecular databases such as KEGG*!, DISEASES??, and STRING??; sequencing utilities
such as BWA MEM** and MACS2%; molecular-cloning tools such as Primer33¢ and NEBcloner?’; and structural-biology
software such as PyMOL>® and AlphaFold2*. Fig. 2f highlights several examples of novel tools autonomously created by
STELLA, including disease—gene association modules, selective-essentiality analysis from CRISPR and RNA interference
(RNAI) datasets, non-cutting enzyme identification, and protein—DNA interface analysis, with further details provided in
Fig. S1. STELLA’s strong tool-creation ability establishes the foundation needed to solve complex biomedical problems, enables
autonomous scientific discovery, and supports progress toward an integrated biomedical reasoning framework.
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Figure 3. STELLA-driven discovery and validation of Butyrophilin Subfamily 3 Member A1 (BTN3A1) as a negative
regulator of NK-cell anti-leukemic activity. a—c, STELLA identifies BTN3A1 as a previously unreported inhibitory
regulator of NK-cell function relevant to AML.
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Figure 3 (continued). STELLA employs structured reasoning templates to parse multi-omic, pathway, and ligand—receptor
knowledge, generating a ranked list of candidate negative regulators (a). BTN3A1 is supported by transcriptomic evidence from
the TCGA AML dataset (b), where BTN3A1 expression is significantly elevated in AML samples relative to normal controls.
Compared with human experts, STELLA achieves substantially accelerated target identification (c). d—e, Generation and
validation of BTN3A1X0 NK92MI cells. Lentiviral transduction, RetroNectin'M-assisted infection, and puromycin selection
yield BTN3A1-deficient NK92MI cells (d), with efficient knockout confirmed by flow cytometry (e). f—i, Loss of BTN3A1
enhances NK-cell cytotoxicity against AML cells. BTN3A1X0 NK92MI cells exhibit significantly increased killing of both
TP53-wildtype (HL60) and TP53-mutant (THP-1, KG-1a, U937) AML lines, as measured by Annexin V* target-cell frequency
following 5 h co-culture at a 5:1 effector-to-target ratio. j—-m, BTN3A1 knockout increases NK-cell degranulation. Across
all AML co-culture settings, BTN3A1X0 NK92MI cells display elevated CD107a* NK-cell frequencies, indicating enhanced
activation and cytotoxic potential. All statistical analyses were performed using two-tailed unpaired Student’s #-tests. P < 0.05
(*), P <0.01 (**), P <0.001 (**%), P < 0.0001 (****), Data are presented as means =+ standard deviation.

STELLA Outperforms State-of-the-art LLMs and Agents on Popular Benchmarks

To further evaluate STELLA’s overall performance, we benchmarked it against a suite of SOTA large language models (DeepSeek-
R1, Claude 4 Opus, OpenAl 03, Gemini 2.5 Pro, and GPT5) and specialized agents (Biomni) on three challenging biomedical
question-answering tasks. The results, presented in Figure 2g, show that STELLA consistently achieves superior performance
across all benchmarks. On the Humanity’s Last Exam (Biomedicine) 10 benchmark, STELLA achieved a top
accuracy of 32%, surpassing all other tested models. This lead was extended on the LAB-Bench! suite, where STELLA
achieved the highest scores of approximately 61% on the DBQA task and 65% on the LitQA task. These results validate the
efficacy of its integrated multi-agent architecture in comparison to both generalist models like Gemini 2.5 Pro'? and other
specialized agents.

STELLA Discovers Novel Target of NK Cell Antileukemic Activity

NK cells play a critical role in immune surveillance against AML, but their function is frequently suppressed by tumor-intrinsic
and microenvironmental inhibitory signals*®*!. AML blasts, for instance, may overexpress inhibitory ligands such as
Human Leukocyte Antigen-E (HLA-E), which engages NK-cell inhibitory receptors like Natural Killer Group 2, member A
(NKG2A), dampening NK cytotoxic activity and enabling immune evasion*?. Although immune checkpoint blockade has
transformed cancer therapy—most notably with PD-1/PD-L1 inhibitors in T-cell-based immunotherapies, the development
of NK-cell-directed checkpoint inhibitors remains significantly underdeveloped*. This gap is particularly pressing in AML,
where the absence of selective tumor-specific markers complicates both CAR-T and NK-based strategies**. Moreover, AML
relapse is frequently driven by leukemic stem cells (LSCs), which are poorly cleared by standard therapies and remain elusive
to immune targeting due to antigen similarity with normal hematopoietic stem cells*. Consequently, identifying novel and
unreported NK-cell inhibitory regulators could offer a powerful means to boost NK-mediated immunity without compromising
healthy tissues. However, due to the complexity of NK receptor-ligand interactions and extensive prior research on canonical
checkpoints (e.g., NKG2A, TIGIT, PD-1), uncovering previously uncharacterized regulators is a nontrivial challenge.

To systematically uncover such hidden targets, STELLA was provided with the prompt “Identify novel, previously unreported
negative regulators of NK cell function in the context of AML” (Fig. 3a). STELLA first employs reasoning templates that
integrates literature mining with database analysis to propose candidate immunoregulatory targets. In brief, it searches
biomedical databases and prior studies to identify genes associated with NK-cell regulation in AML, then filters out those
already reported or well-characterized, thereby focusing on candidates that have not been previously implicated (i.e., truly novel
targets). Each candidate is further validated using supporting evidence from patient datasets (e.g., gene expression patterns in
the TCGA AML cohort) to ensure disease relevance and provide grounded biological rationale (Fig. 3b). This automated
approach greatly accelerates hypothesis generation (Fig. 3c). STELLA completed its NK target discovery pipeline in about
8 minutes, a task that required on the order of two days of intensive manual curation by a human expert (e.g., a PhD-level
researcher majoring in NK therapies for AML).

Using STELLA, we identified Butyrophilin Subfamily 3 Member A1 (BTN3A1, also known as CD277) as a top candidate
inhibitory regulator of NK cells in AML. BTN3A1 is an immunomodulatory surface protein known for its role in T-cell biology.
For example, BTN3A1 can bind to N-glycosylated CD45 and thereby inhibit T-cell receptor signaling, and it is required for
certain y6 T-cell activation processes. There is also some evidence that BTN3A family molecules can regulate NK-cell activity
(affecting NKp30-mediated IFNy production). BTN3A1 is supported by transcriptomic evidence from the TCGA AML dataset
organized by STELLA (Fig. 3b), where BTN3A1 expression is significantly elevated in AML samples relative to normal
controls. However, prior to this work, BTN3A1 had not been reported to be linked to NK-dysfunction. STELLA’s analysis
singled out BTN3A1 despite its absence from existing NK immunotherapy literature, highlighting the platform’s ability to
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uncover non-obvious targets. These insights prompted us to perform experimental evaluation of BTN3A1’s role in NK-cell
anti-leukemia responses.

We next performed a series of in vitro experiments to functionally validate BTN3A1 as a negative regulator of NK-cell
activity. We used CRISPR/Cas9-genome-editing to generate a BTN3A1 knockout in the NK92MI cell line, a well-established
human NK-cell model, and confirmed the loss of BTN3A1 protein expression by flow cytometry (Fig. 3d & e). To assess
cytotoxic function, we co-cultured BTN3A X0 NK92MI cells with four AML cell lines. These included three TP53-mutant lines
(THP-1, KG-1a, U937) and one TP53-wildtype line (HL60). Across all four models, BTN3A1-deficient NK cells demonstrated
significantly increased killing of AML targets, as indicated by elevated Annexin V positivity in the target cells (Fig. 3f—i). We
further examined NK-cell effector function by measuring surface CD107a expression, a marker of degranulation and cytolytic
granule release. BTN3A1 knockout cells consistently showed higher CD107a levels following co-culture with AML cells
(Fig. 3j—m), confirming enhanced activation. Together, these results establish BTN3A1 as a previously unrecognized inhibitory
regulator of NK-cell function. Its disruption significantly enhances NK-mediated cytotoxicity and degranulation against
AML, supporting BTN3A1 as a promising therapeutic target and validating STELLA’s prediction. This workflow exemplifies
STELLA’s ability to condense labor-intensive hypothesis generation into rapid, high-fidelity reasoning for accelerated scientific
discovery.

STELLA Optimizes Enzyme Activity for Strictosidine Synthase

To demonstrate the potential of Al-assisted enzyme engineering in advancing biological applications, we focused on optimizing
the activity of strictosidine synthase from Rauvolfia serpentina (RsSTR; UniProt ID: P68175). Terpenoid indole alkaloids
(TIAs) are a structurally diverse group of natural products primarily biosynthesized by plants of the Apocynaceae family*®. As
essential biogenic precursors, TIAs form the basis for numerous clinically valuable therapeutics, including anticancer agents
such as vinblastine, vincristine, and irinotecan*’-48, A critical, rate-limiting step in TIA biosynthesis is the RsSTR-catalyzed
Pictet—Spengler condensation of tryptamine and secologanin to form strictosidine**=!. Consequently, engineering RsSTR
variants with improved catalytic activity is crucial for enhancing strictosidine production and enabling the efficient biosynthesis
of medically relevant TIAs. While previous studies have identified mutations that modulate activity, these efforts were
largely empirical and limited in scope. Deep learning models, particularly when augmented by a self-evolving agent, offer
a transformative approach to this challenge, accelerating the discovery of highly active enzymes through iterative rounds of
directed evolution.

Prompted by the user command “Optimize the catalytic activity of strictosidine synthase (UniProt ID: P68175) for its
natural reaction involving tryptamine and secologanin,” STELLA automatically initiated a multi-round directed evolution
workflow. This process integrates structural modeling, protein language model prediction, and continuous wet-lab feedback
(Fig. 4a). Drawing from prior successful workflows stored in its evolving template library, the Manager Agent defines a four-step
reasoning pathway: (1) retrieval of enzyme and substrates, (2) structural modeling and catalytic pocket identification, (3) mutant
library construction and activity prediction, and (4) biophysical stability filtering and experimental recommendation.

Specifically, in Step 1, the Dev Agent retrieves the RsSTR amino acid sequence from UniProt’> and the SMILES
representations of tryptamine and secologanin using the Tool Ocean. In Step 2, STELLA employs Boltz-2>3 to predict the
enzyme—substrate complex and identify pocket residues. Based on these pocket residues, the Dev Agent constructs a virtual
single-point mutant library by enumerating all substitutions within a 5 AA radius of the active site while excluding residues essential
for global folding. For each candidate mutant, STELLA predicts relative activity using a fine-tuned ESM2 (650M)>* protein
language model (Step 3). This ESM2 model is iteratively refined through STELLA’s self-evolving mechanism: experimental
data generated from the preceding round are used to retrain the model, improving its RsSTR-specific sequence—activity mapping
and thereby yielding increasingly accurate predictions in subsequent rounds. In Step 4, STELLA further filters high-scoring
mutants using thermodynamic stability criteria. FoldX>> and RosettaDDG>® are invoked to compute AAG values, and only
variants with favorable stability (typically AAG < 0 kcal/mol in both models) pass the filter. The Critic Agent then evaluates
mechanistic plausibility, flags potential structural risks, and suggests refinements prior to generating the final set of recommended
mutants and the associated experimental protocol for synthesis.

In the first round, the workflow generated 30 single-point variants targeting the catalytic pocket. Although most
mutants showed reduced activity relative to wild type (WT), several displayed moderate improvements, yielding a valuable
sequence—function dataset. Notably, M276R improved activity by 54%, highlighting Met276 as a key hotspot for optimization.
STELLA automatically incorporated these measurements to fine-tune the ESM2 model, substantially enhancing its predictive
accuracy for RsSTR.

In the second round, candidate mutations were re-ranked using the updated ESM2 model, structural stability filters (FoldX
and RosettaDDG), and STELLA’s Critic Agent to evaluate mechanistic plausibility. STELLA subsequently recommended a
prioritized panel of variants for experimental testing. For example, M276L increased catalytic yield by 110% compared
to WT. Density distributions across rounds confirm a clear rightward shift in activity (Fig. 4b), demonstrating that STELLA
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Figure 4. STELLA-driven multi-round enzyme optimization with wet-lab feedback. a, Workflow of STELLA for
optimizing the catalytic activity of strictosidine synthase from Rauvolfia serpentina (RsSTR; UniProt ID: P68175), integrating
computational prediction, mutational library design, and wet-lab validation. After each round, wet-lab experimental data are
reintegrated to fine-tune predictive models, enabling iterative improvement. b, Distribution of relative enzyme activity across
the first and second optimization rounds, demonstrating improved activity after feedback integration. ¢, Experimental validation
of selected STR variants across two rounds. M276R was tested relative to the WT in the first round, and V176F and M276L in
the second round, all of which showed enhanced catalytic activity. Each variant or WT activity was measured in three
independent experiments. d, Computational evaluation of binding energies for WT and variants, measured by docking score
and MM/PBSA calculations, correlating with increased activity in high-performing mutants. e, Interaction diagrams of wild
type and variants highlighting hydrogen-bond networks, drawn using Schrodinger software, with variants forming more
stabilizing interactions compared to WT.

effectively incorporates wet-lab feedback to progressively enrich for high-performing mutants. Docking scores and MM/PBSA
calculations of high-performing mutants are also higher than WT, demonstrating consistency with wet-lab activity (Fig. 4d).
Structural interaction diagrams reveal strengthened hydrogen-bond networks and more favorable substrate—enzyme contacts in
the optimized variants (Fig. 4e), offering a mechanistic basis for their improved kinetics.

To provide a mechanistic explanation for the experimentally observed catalytic gains, STELLA also autonomously
orchestrated molecular dynamics (MD) simulations to characterize the structural stability and dynamic behavior of the
top-performing variants. By coordinating the analysis of backbone Root Mean Square Deviation (RMSD), per-residue Root
Mean Square Fluctuation (RMSF), and the radius of gyration (Ry) over production trajectories (Fig. S3, S4, and S5), the agent
correlated conformational dynamics with functional improvements. For each system, replicate simulations were averaged and
visualized with standard deviation bands. STELLA observed that backbone RMSD traces for all variants reached stable plateaus
following equilibration (Fig. S3), confirming the maintenance of global structural integrity comparable to WT. Similarly,
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Figure 5. STELLA-driven physical intelligence built up through self-evolving Vision-Language-Action (VLA). a, The
framework employs a “Decompose-Monitor-Recover” mechanism. Unlike static training, STELLA actively creates tools to
interact with the environment when errors occur. This process generates a rich dataset of recovery trajectories, effectively
teaching the VLA the causal dynamics of the physical world (i.e., how to recover from failure). b, Diverse biomedical tasks
conducted by STELLA-VLA. Visualizations of four representative long-horizon tasks ranging from precise liquid-handling
(Aspirate with pipette) to contact-rich manipulation (Load centrifuge rotor). ¢, Self-improvement and comparison. Top:
STELLA-VLA's success rate steadily increases over iterations, demonstrating the accumulation of world knowledge. Shaded
regions represent the standard deviation across 5 independent runs. Bottom: STELLA-VLA significantly outperforms
traditional SFT and RL baselines across different VLA architectures (g, 7o 5, RDT) with an equivalent sample budget,
validating the efficacy of tool-mediated evolution. Error bars indicate the standard deviations.

RMSEF profiles revealed only localized changes in flexibility near mutated regions, with global fluctuation patterns largely
preserved (Fig. S4). Crucially, STELLA identified a consistent decrease in R, values for the optimized variants compared to
WT (Fig. S5), indicating a modestly more compact conformational ensemble. From this multimodal data, STELLA concluded
that this reduced structural heterogeneity, combined with preserved stability, fosters enhanced active-site preorganization—a
key dynamic mechanism driving the improved catalytic activity.

STELLA-Driven Physical Intelligence for Biomedical World Modeling

VLA architectures jointly integrate visual observations, natural language instructions, and proprioceptive cues to generate
action trajectories in an end-to-end manner'®~!8. By aligning perception, reasoning, and control more closely with how humans
interact with the physical world, VLA systems represent a promising foundation for developing generalist world models that
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unify multimodal understanding with embodied action. In STELLA, we aim to specifically advance biomedical experimental
robotics, which presents unique challenges because robots must operate across heterogeneous laboratory interfaces such as
digital displays, rotating knobs, membrane buttons, tubes, and transparent containers while maintaining strict millimeter-level
precision. The presence of visually ambiguous materials, deformable vessels, and tightly constrained multi-step operations
further demands strong visual reasoning, reliable language understanding, and consistently high-precision manipulation that
exceed the requirements of most general-purpose robotic tasks.

To tackle the unique challenges and efficiently train VLA for biomedical experiments, STELLA employs a Decompose-
Monitor-Recover mechanism as shown in Fig. 5a. STELLA first decomposes a long-horizon manipulation task (e.g., Use
dual-Aloha arms to screw on a Centrifuge tube cap: one grips the tube while the other twists the cap) into interpretable subtasks
such as dual grasp, cap alignment, thread engagement, and final tightening. During execution, STELLA monitors each subtask
using multimodal vision and language tools that detect errors, including misaligned grasps or failed thread engagement. When a
failure is detected, STELLA invokes specialized recovery tools that autonomously correct the error and return the system to a
viable state. These recovery rollouts create a rich dataset of corrective trajectories that capture the fine-grained visual cues and
high-precision manipulations required for biomedical workflows. By iteratively incorporating these examples into training,
STELLA enables the VLA to progressively strengthen its visual reasoning, instruction following, and physical reliability across
iterations.

We evaluate STELLA-VLA across a suite of challenging biomedical tasks based on the Autobio benchmark'® (Fig. 5b), each
demanding visual reasoning, precise manipulation, and faithful instruction following. Specifically, the “Aspirate with pipette”
task stresses dual-arm coordination and depth-aware liquid-sensing under randomized liquid-levels. “Transfer centrifuge tube”
requires accurate grasping, visual alignment, and placement, conditioned on language instructions. “Operate thermal mixer
panel” involves reading Ul feedback and setting mixer parameters—rpm, temperature, and time—on a digital interface with
a URS5e—-Robotiq platform, testing both pixel-level manipulation and language grounding. “Load centrifuge rotor’” requires
inserting a tube into the slot symmetrically opposite an existing tube, a contact-rich task requiring advanced spatial reasoning
and precise positioning.

Across all tasks, STELLA enables consistent self-improvement of VLA performance (Fig. 5c). Success rates monotonically
increase as the agent accumulates recovery experience and refines its internal VLA model. Crucially, we ensure a fair
comparison by restricting all methods to an equivalent sample budget. Under this strict constraint, STELLA achieves
substantially stronger performance compared with supervised fine-tuning (SFT) and online reinforcement learning (RL)
baselines (based on SimpleVLA-RL>’) across different VLA base architectures (79!”, 7o 5'®, RDT'®). For example, the average
task success rate improves from 17% to 82% on my. These results underscore the importance of active, self-evolving feedback
loops for developing physical intelligence in biomedical domains and mark an initial step toward building a biomedical world
model grounded in real interaction with the physical world.

Conclusion

In this work, we introduced STELLA, a self-evolving agent-based framework that addresses the critical limitation of static Al
systems in biomedicine: the inability to adapt to the staggering complexity of scientific inquiry. By employing a collaborative
multi-agent architecture (comprising Manager, Developer, Critic, and Tool Creation roles), STELLA continuously refines
its internal reasoning templates and autonomously expands a dynamic “Tool Ocean”. This mechanism allows the system to
evolve in tandem with the problems it encounters, effectively integrating computational reasoning and physical execution.
Consequently, STELLA serves as a concrete blueprint for a Biomedical World Model: a unified system that does not merely
analyze existing data but actively evolves its capabilities to simulate, predict, and interact with biological reality.

The practical utility of this framework is demonstrated by rigorous experimental validation across three distinct scales of
discovery. In oncology, STELLA autonomously identified and validated BTN3A1 as a novel negative regulator of NK-cell
function in AML, a finding confirmed through CRISPR knockout studies. Moving to protein engineering, the agent orchestrated
a complete directed evolution workflow for the enzyme strictosidine synthase, yielding the M276L variant, which exhibited a
more than two-fold improvement in catalytic activity. Finally, extending into physical laboratory automation, STELLA trained
VLA models through a Decompose-Monitor-Recover mechanism, increasing robotic manipulation success rates from 17%
to 82%. These achievements demonstrate that self-evolving agents can effectively integrate the entire circle from hypothesis
generation, molecular design, and physical verification, driving genuine scientific innovation.

Looking ahead, the evolution of STELLA will focus on three critical dimensions. First, we will expand the agent’s reasoning
capabilities across broader biological scales. While our current success focuses on protein and gene-level perturbations, future
iterations will integrate disparate modalities (from single-cell transcriptomics and tissue histology to longitudinal clinical
records), enabling the model to simulate and predict complex interactions at the organ and organismal levels. Second, we will
deepen the integration with physical systems to achieve fully autonomous, end-to-end experimentation. By completing the loop
between hypothesis generation and robotic execution, future agents will not merely train control policies but independently
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orchestrate long-horizon experimental campaigns, dynamically adjusting protocols in real-time based on wet-lab feedback.
Finally, we envision scaling STELLA into a distributed, cloud-native infrastructure. By serving a global community of
researchers, the system will ingest diverse experimental data at scale, accelerating its own self-evolution through massive-scale
interaction. Ultimately, these advances will transform STELLA from a sophisticated tool into a ubiquitous research partner,
dramatically accelerating the pace of discovery in biomedical research.

Methods

Baselines
To evaluate STELLA’s performance against existing methods on Humanity’s Last Exam and the LAB-Bench datasets, we
selected a comprehensive set of baseline models, categorized into two primary groups:

o LLMs: We included Gemini 2.5 Pro'?, Claude 4 Opuszg, DeepSeek-R1 13 Grok-4%°, GPT-40%8, GPT-5!', and OpenAl
03?7, These represent state-of-the-art LLMs offering strong general knowledge and reasoning capabilities. Specifically,
Gemini 2.5 Pro is distinguished by its extended context window and robustness in complex tasks; Claude 4 Opus is
recognized for advanced coding capabilities; DeepSeek-R1 and OpenAl 03 are noted for their superior reasoning abilities.

+ Biomedical Agents: Biomni®® was selected as the domain-specific baseline. We used its opensource version at

https://github.com/snap-stanford/Biomni. As an agent explicitly designed to automate biomedical
research, it provides the most direct comparison to STELLA within this specialized domain.

For the STELLA framework configuration, the Dev Agent and Tool Creation Agent utilized Claude 4 Sonnet, while the
Manager Agent and Critic Agent were powered by Gemini 2.5 Pro.

Q&A Benchmarks

To ensure a fair comparison with leading LLMs and agents, we adopted the experimental protocols from Biomni
OriGene>”, with minor modifications applied to two benchmark suites:

3% and

» LAB-Bench (DBQA & LitQA)!°: The test sets were constructed using a 12.5% sampled subset of the complete Database
Question-Answering (DBQA) and Literature Question-Answering (LitQA) sub-benchmarks. No development sets were
used, ensuring a zero-shot evaluation setting. Our evaluation strictly adhered to the official LAB-Bench protocol, utilizing
multiple-choice formats and allowing for abstention when information was insufficient.

+ Humanity’s Last Exam (HLE)®’: Following the sampling protocol from the Biomni study, we evaluated STELLA on
a representative subset of 50 questions spanning fourteen subdisciplines of biology and medicine, including genetics,
molecular biology, computational biology, and bioinformatics. Evaluations were conducted on the test set following
established protocols.

Flow Cytometry Experiments

Cell suspensions were stained with human monoclonal antibodies. Prior to antibody staining, mouse serum was used to block
non-specific Fc-receptor binding. Flow cytometry data were acquired on an FCM LSR II flow cytometer (BD Biosciences,
USA) and analyzed using FlowJo software (Tree Star, USA). The antibodies used for flow cytometry are listed in the Key
Resources Table.

Cell Lines, Cell Culture, and Reagents

Human AML cell lines THP-1, KG-1a, U937, and HL60 (target cells) were obtained from the Shanghai Cell Bank (Chinese
Academy of Sciences, Shanghai, China). All cell lines were authenticated using short tandem repeat (STR) DNA fingerprinting
and tested negative for mycoplasma contamination. AML cell lines were cultured in RPMI 1640 medium (Biosharp, Cat#
BL303A) supplemented with 10% fetal bovine serum (FBS; Sigma, Cat# F7524) and 1% penicillin/streptomycin (Biosharp,
Cat# BL142A). HEK293T/17 cells used for lentiviral packaging were maintained in DMEM medium (Viva Cell) supplemented
with 10% FBS and 1% penicillin—streptomycin—amphotericin B solution. All cells were cultured in a humidified incubator at
37 °C with 5% CO;.

Construction of BTN3A1 Knockout NK92MI Cells

A lentiviral vector expressing hCas9 and a BTN3A1-targeting gRNA (VectorBuilder, gRNA 669) was used to generate BTN3A1
knockout NK92MI cells. gRNA sequence: 5'-GATCATGAGAGGCAGCTCTG-3".
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Lentiviral particles were produced by co-transfecting HEK293T/17 cells with the expression plasmid and packaging
plasmids dR8.9, BaEV-Rless, and pAdVAntage using polyethyleneimine (PEI). Viral supernatants were collected at 24 and 48 h
post-transfection, filtered through a 0.45 ym membrane, and concentrated by ultracentrifugation at 90,000 xg for 2 h at 4 °C.

To enhance transduction, non-treated 24-well plates were coated with RetroNectin™ (Takara Bio) overnight at 4 °C.
NK92MI cells (2.5 x 10%) were added to the coated wells and infected with concentrated lentivirus in the presence of 10 ug/mL
Vectofusin®-1 (Miltenyi Biotec). Plates were centrifuged at 1,000 xg for 1 h at 32 °C and subsequently transferred to a CO,
incubator. At 72 h post-infection, puromycin (3 ug/mL) was added for selection of successfully transduced NK92MI cells.
Knockout efficiency was assessed by flow cytometry.

NK Cell-Mediated Killing Assays
THP-1, KG-1a, U937, and HL60 target cells were co-cultured with NK92MI effector cells at an effector-to-target (E:T) ratio of
5:1 in 96-well plates. After co-culture, target cell death was quantified by flow cytometry following staining with 7-AAD and
Annexin V.

NK92MI cells were cultured in «-MEM medium (Viva Cell) supplemented with 12.5% heat-inactivated horse serum (Viva
Cell), 12.5% FBS (Viva Cell), 0.02 mM folic acid (Sigma), 0.2 mM inositol (Sigma), 0.1 mM S-mercaptoethanol (Acmec), and
1% penicillin—streptomycin—amphotericin B solution.

General Materials of Enzyme Experiments

All chemicals were purchased from commercial suppliers, including Sigma-Aldrich, Aladdin, Solarbio, and Macklin. DH5«
chemically competent E. coli cells were obtained from Solarbio (Beijing, China). E. coli Origami B (DE3) strains and the pCold
II plasmid were maintained in our laboratory. Primers were synthesized by GENEWIZ (Suzhou, China). TransStart® FastPfu
DNA Polymerase was purchased from TransGen Biotech (Beijing, China), and FastDigest Dpnl was obtained from Huawei
(Tianjin, China). Routine cloning enzymes were purchased from Vazyme (Nanjing, China). All generated E. coli strains were
stored as glycerol stocks at —80°C. Antibiotics were obtained from BBI Life Sciences (Shanghai, China).

Recombinant STR Expression

Plasmids containing the Rauvolfia serpentina strictosidine synthase (RsSTR) gene were transformed into DHS5«a chemically
competent cells for amplification. After plasmid recovery, constructs were transformed into E. coli Origami B (DE3) cells.
Cultures were grown in LB medium at 37 °C to an ODg( of ~0.8, followed by induction with 0.5 mM IPTG at 16 °C for 20 h.
Cells were harvested by centrifugation (6000 rpm, 20 min) and resuspended in lysis buffer (50 mM PIPES, pH7.5, 10 mM
imidazole). All STR variants were adjusted to equal concentrations using the same buffer. Cell lysis was carried out using
TieChui™ E. coli Lysis Buffer, and clarified lysates were obtained by centrifugation (10,000 rpm, 10 min).

Cell-Free Extract (CFE) Activity Assay

Enzymatic reactions were performed in 50 uL mixtures containing 0.02 mg lyophilized CFE dissolved in 50 mM PIPES buffer
(pH 6.8), 2 mM secologanin, and 1 mM tryptamine-HCI. Reactions were incubated at 37 °C with shaking at 250 rpm for 15 min
and quenched with 50 uL methanol. Ammonium formate solution (100 uL, 30 mM, pH 2.8) was added to precipitate PIPES,
and samples were centrifuged before HPLC analysis.

Analytical Methods

Reaction products were analyzed on an Agilent 1260 Infinity II HPLC system equipped with a photodiode array detector.
Separation was performed using an Eclipse Plus C18 column (250 mm X 4.6 mm). UV detection wavelengths were set at 210
and 280 nm. The mobile phases consisted of acetonitrile with 0.1% TFA and 30 mM ammonium formate (pH 2.8). Product
quantification was conducted based on integrated peak areas. Detailed chromatographic gradients and retention times are
provided in Supplementary Table S8.

VLA Base Models and Baselines

We evaluate our approach using three state-of-the-art Vision-Language-Action (VLA) architectures as backbones: mg, 7o 5, and
RDT. These models serve as the foundation for both our proposed STELLA-VLA method and the baseline comparisons. All
experiments are conducted on a compute cluster equipped with 8 NVIDIA H100 GPUs.

VLA Training Implementation Details

Supervised Fine-Tuning (SFT) Baselines. To establish a strong supervised baseline, we generate a synthetic expert dataset
comprising 300 trajectories per task. The data generation pipeline utilizes a template-based approach: for each subtask,
we define an end-effector motion path conditioned on the initial state and annotated object keypoints. To ensure physical
feasibility and smoothness, the corresponding joint-space trajectories are computed using inverse kinematics (IK) combined
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with Time-Optimal Path Parameterization (TOPP). The resulting motions are executed via a PD controller at a control frequency
of 50 Hz. We fine-tune the base models for 30,000 steps with a global batch size of 32. We use the AdamW optimizer with a
weight decay of 10™# and a cosine learning rate schedule with a warmup period of 2,000 steps. Images are resized to 224 x 224
following standard VLA protocols.

Reinforcement Learning (RL) Baselines. For RL comparisons, we adopt the SimpleVLA-RL framework. To ensure a fair
comparison of sample efficiency, the maximum environment interaction budget is strictly limited to 300 episodes per task. We
employ a constant learning rate of 7 = 5x 107 and a training batch size of 32. During data collection, we use a sampling count
of 8, and updates are performed with a mini-batch size of 128. To stabilize training, we apply Proximal Policy Optimization
(PPO) clipping with €jow = 0.2 and epjgh = 0.28. The sampling temperature is set to 7 = 1.6, and the action space is discretized
with an action chunk size of 8.

STELLA-VLA Settings. STELLA-VLA follows an iterative decompose-monitor-recover training protocol conducted over
15 iterations. In each round, we perform 20 policy rollouts per task to collect data, aggregating both successful autonomous
trajectories and corrective recovery demonstrations. This results in a cumulative dataset of 300 trajectories per task (15 iterations
% 20 rollouts), matching the sample budget of the SFT and RL baselines. Following data collection, the policy is updated via
SFT for 2,000 steps per iteration with a batch size of 8, yielding a total of 30,000 training steps matching the SFT baseline. To
maintain consistency, we utilize the same optimizer configurations (AdamW, weight decay 10~%) and learning rate schedule.
This iterative regime allows the model to progressively internalize the corrective behaviors provided by the recovery tools,
effectively adapting to the specific failure modes encountered during exploration.
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Data Availability

All data used in this study are publicly available, with details of their usage provided in the Methods section.

Code availability

The source code of this study is freely available at GitHub (https://github.com/zaixizhang/STELLA) to allow for
replication of the results of this study. The project website is at https://stella-agent.com/.
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Tool Creation Benchmark

This section outlines the evaluation criteria used in the STELLA Benchmark. The framework assesses model performance
across five primary dimensions, each scored on a 5-point scale with 0.05-point precision. Each dimension has clearly defined
scoring guidelines and specific aspects to be examined, ensuring transparency, reproducibility, and alignment with best practices
in scientific evaluation.

Technical Accuracy (5.0 points) — Measures the correctness and precision of scientific content and methodology. Scoring
criteria: 5.0 indicates perfect accuracy with comprehensive detail; 4.5-4.9 denotes near-perfect results with only minor
omissions; 4.0-4.4 reflects very accurate work with a few small errors; 3.5-3.9 is generally accurate with some significant
mistakes; 3.0-3.4 is mostly accurate but contains notable gaps; below 3.0 represents major errors or omissions. Key aspects
include data accuracy and reliability, methodology correctness, calculation precision, protocol accuracy, database query
accuracy, tool and version specificity, parameter validation, and consideration of error handling.

Domain Knowledge (5.0 points) — Evaluates the depth of understanding of bioengineering concepts and principles.
Scoring criteria: 5.0 reflects expert-level understanding with cross-domain integration; 4.5-4.9 shows deep understanding with
comprehensive context; 4.0-4.4 indicates strong understanding with good context; 3.5-3.9 suggests good understanding with
some context; 3.0-3.4 indicates basic understanding with limited context; below 3.0 shows superficial or incorrect understanding.
Key aspects include biological concept comprehension, technical terminology usage, cross-disciplinary integration, awareness of
current research, familiarity with field-specific best practices, accurate literature citation, knowledge of protocol standardization,
and awareness of regulatory compliance.

Analytical Quality (5.0 points) — Assesses the depth and sophistication of analysis. Scoring criteria: 5.0 represents
comprehensive, multi-level analysis with novel insights; 4.5-4.9 shows deep analysis supported by strong evidence; 4.0-4.4
denotes thorough analysis with sound reasoning; 3.5-3.9 indicates good analysis with some depth; 3.0-3.4 reflects basic analysis
with limited depth; below 3.0 represents superficial or flawed analysis. Key aspects include analysis depth, logical reasoning,
data interpretation, statistical rigor, critical evaluation, alternative analysis methods, validation approaches, discussion of
limitations, and consideration of edge cases.

Innovation Impact (5.0 points) — Evaluates creativity in problem-solving and practical applicability. Scoring criteria: 5.0
reflects groundbreaking insights with immediate practical value; 4.5—4.9 denotes novel approaches with clear applications;
4.0-4.4 indicates creative solutions with good utility; 3.5-3.9 represents useful insights with some creativity; 3.0-3.4 shows
standard approaches with limited innovation; below 3.0 denotes minimal innovation or impractical solutions. Key aspects
include solution creativity, practical applicability, future implications, alternative approaches, improvement suggestions, resource
optimization, scalability, cross-platform compatibility, and integration potential.

Communication Quality (5.0 points) — Assesses clarity, organization, and professionalism of the output. Scoring criteria:
5.0 represents exceptional clarity with perfect organization; 4.5-4.9 shows excellent clarity with strong organization; 4.0—4.4
denotes very clear communication with good organization; 3.5-3.9 suggests adequate clarity and organization; 3.0-3.4 reflects
somewhat clear communication with basic organization; below 3.0 represents unclear or poorly organized work. Key aspects
include information structure, clarity of expression, professional formatting, completeness, accessibility, documentation quality,
clarity of error messages, effective use of visual aids, and proper reference formatting.

Task Category-Specific Criteria — In database retrieval tasks, performance is judged on completeness of data extraction,
accuracy of query interpretation, proper data organization, inclusion of relevant metadata, cross-reference validation, API usage
efficiency, consideration of rate limits, robustness of error handling strategies, and consistency of data formats. In experimental
protocol tasks, emphasis is placed on protocol completeness, safety considerations, troubleshooting guidance, parameter
optimization, quality control measures, equipment specifications, reagent details, time management, cost considerations,
validation steps, and suggestions for alternative methods. In analysis tasks, criteria include depth of analysis, statistical rigor,

19/36



Model Technical Accuracy Domain Knowledge — Analytical Quality  Innovation Impact ~Communication Quality ~ Overall Score ~ Completion Rate

GPT-40 2.55+0.98 2.89 +0.79 2.31+0.76 2.16 + 0.69 330+043 2.60 +0.77 100%
DeepSeek-R1 2.90 +0.95 3.25+0.76 2.76 +0.76 2.57 £ 0.66 3.62 +£0.39 298 +0.75 100%
Gemini 2.5 Pro 2.92 +1.03 323+0.85 2.78 +0.84 2.55+0.77 3.62 + 0.66 2.99 +0.85 89.4%
Grok-4 3.00 £ 0.98 331+0.76 2.84 +0.80 2.63 +0.70 3.64 £ 0.56 3.05+0.77 70.2%
OpenAl 03 3.01 £ 1.11 3.36 +0.90 2.89 +0.93 2.67 +0.85 3.56 +0.71 3.08 +0.92 70.2%
GPT-5 3.15+0.97 3.54 + 0.66 3.04 +0.76 2.84 +0.67 3.83+0.35 3.24+0.73 93.6%
Claude 4 Opus 3.13+£0.99 3.54+0.70 3.11+0.79 2.86 +0.73 3.87 +0.36 3.26+0.76 100%
Biomni 3.20+0.97 3.49 +0.83 3.37 +0.87 297 +0.76 3.79 + 0.68 3.33+0.82 100%
STELLA 421 £0.72 4.08 £0.81 3.83+0.84 3.60 + 0.88 4.18 £0.71 4.01£0.72 100%

Table S1. Overall performance comparison of large language models (LLMs) across benchmark tasks. Reported values
represent average evaluation scores, with each column corresponding to a different model.

accurate result interpretation, acknowledgment of alternative explanations and limitations, data preprocessing, validation
methods, reproducibility, tool selection justification, and performance optimization. In structure analysis tasks, evaluation focuses
on structure interpretation accuracy, interaction analysis, function prediction, visualization guidance, literature integration, force
field selection, energy calculation methods, conformational analysis, binding site prediction, and consideration of dynamic
properties.

Scoring Methodology. — Model performance was evaluated across five core dimensions: Technical Accuracy (25%),
Domain Knowledge (20%), Analytical Quality (20%), Innovation Impact (15%), and Communication Quality (20%). Each
dimension was scored on a 5-point scale with a precision of 0.05. Scores were computed independently, and the final score
was calculated as a weighted average based on the predefined coefficients. All scoring criteria were explicitly defined for each
dimension to ensure reproducibility and clarity. Scoring was first performed automatically using the evaluation logic integrated
into the benchmark system. The resulting scores were then cross-checked by three independent PhD-level researchers with
relevant domain expertise. They examined a subset of model outputs to verify scoring consistency, identify methodological
ambiguities, and detect any possible score misalignment. Human review was only applied when there was clear evidence of
scientific error or systematic mis-evaluation. Large score changes were only permitted when supported by verifiable factual
error or benchmark mis-specification. This two-stage procedure, using automated scoring followed by expert verification,
ensures high-resolution quantitative assessment while preventing deviation from biological accuracy. The approach maintains
objectivity, enables reliable comparison between models, and supports reproducible scientific evaluation.
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Question

Examples of Tool Creation Benchmark

Question

Question

Question

Identify top genes associated with Parkinson’s
disease (PD) from the DISEASES database (text-
mining), using Z-score > 7.1, return Top-10.

Reasoning Pathway (Manager)

1) Ingest DISEASES
human_disease_integrated_full.tsv

2) Normalize disease string/aliases
(“Parkinson’s discase”, “PD”; fuzzy cutoff’
80)

3) Filter records with Z > 7.1

4) RankbyZ

5) Add I-line functional roles

6) Sanity-check vs canonical PD biology.

Tool Ocean Plan

1) DISEASES/DisGeNET ingester
2) TSV schema autodetector

3) Fuzzy matcher

4) Confidence filter

5) Variant/pathway enrichers

Dev Actions & Findings of the first pass

Parsed disease TSV, matched Parkinson’s

disease (280% similarity), filtered genes

with Z > 7.1, and selected Top-10 hits.

Each gene is annotated with literature-

based biological roles:

+ SNCA - a-synuclein; aggregation-prone
Lewy body core protein

* LRRK2 - kinase; late-onset familial PD,

vesicle/lysosome signaling

GBA - glucocerebrosidase; lysosomal

enzyme, loss elevates a-syn burden

And seven more others.

Critic Gaps

DISEASES workflow lacks a persistent tool,
relies on ad-hoc TSV parsing, and requires
schema autodetect. Evidence links, validation,
and enrichment analyses are not yet
implemented.

Self-Evolve (Template/Tool)

Template add: 1)Load TSV — 2) Fuzzy
disease match — 3) Detect z column— 4) Filter
7> threshold — 5) Rank & output — 6) Sanity
sentinels — 7) Gaps & next tools.

New tool spec: diseases_db_query(...) fetches
and filters disease associations with fuzzy
matching, auto schema detection, caching, and
provenance tracking.

Re-run dings (with evolved plan/tool)

Same Top-10 set with outputs including
disease name, Z column, dataset version, and
JSON.

Optional STRING check clusters genes into
mitochondrial and proteostasis modules,
aligning with PD pathology.

Finish

Identify preferentially essential gencs in U20S
(ACH-000364) using DepMap Public 25Q2
CRISPR (Chronos) and RNAi (DEMETER?) data;
report Top-10 and visualize gene-cffect scores.

Identify restriction enzymes that do not cut the
pCMV-PE6e plasmid using the REBASE 2024
enzyme database and the pCMV-PE6c FASTA
sequence; return the complete non-cutter list.

Analyze protein-DNA interactions in PDB 3BDP,
focusing on contacts between protein chain A and
DNA chain P within a 4.0 A cutoff; report
interaction counts.

Reasoning Pathway (Manager)

Data prep: Get Chronos & DEMETER2

gene-effect matrices + cell line metadata.

2) Confirm U20S <> ACH-000364 mapping.

3) Extraction: Pull U20S gene-effect scores.

4)  Analysis: Down-weight common
essentials; assess gene selectivity and
cross-platform agreement.

5) Ranking: Integrate CRISPR & RNAi via
rank-average. Select Top-10 genes.

6) Visualization: Show U20S effects, cohort

distribution, and 10-gene heatmap across

osteosarcoma lines.

Tool Ocean Plan

1) FASTA parser
2) DepMap loader
3) Z-score computation
4) Rank prioritization

Dev Actions & Findings of the first pass

Loaded Chronos/DEMETER?2 (DepMap
25Q2), verified ACH-000364 (U20S),
extracted gene-effect scores, masked
common essentials, and computed rank-
averaged selectivity to identify Top-10
U20S-specific dependencies. Visualized
per-gene effects and heatmap across
osteosarcoma lines.

Cell cycle/CDK - lineage-biased
vulnerabilities post-masking

Pp53/Mdm2 — U20S (TP53-WT) may rely
on p53 repressors

And others.

Critic Gaps

Data tracking incomplete; release-matched
essential masks required to prevent leakage.
Account for DEMETER?2 off-targets and
Chronos CNV bias; use lineage-matched Z-
scores to improve selectivity.

Self-Evolve (Template/Tool)

Template steps: 1)Load release— 2) Map cell
line— 3) Harmonize genes— 4) Mask

C E Is— 5) Compute ity
Z per tech — 6) Concordance gate — 7)
Combine— 8) Output with provenance — 9)
Plots— 10) Gaps & next tools

New tool spec:

Run depmap_selective_essential to identify top
10 U20S-selective dependencies from 25Q2
CRISPR/RNAI data, filtering by concordance
and essentiality masks.

Re-run Findings (with evolved plan/tool)

Stable Top-10 with lineage-matched Z and
cach gene includes metadata,

DISEASES Z > 7.1 highlights Top-10 PD genes
(e.g., SNCA, LRRK2, GBA) linked to aggregation,
lysosome, mitochondria, and proteostasis
pathways—yielding a reusable Strict-Z template
and query tool for future analyses.

Z-score details, and plots. Heatmap shows
consistent U20S selectivity across.
osteosarcoma lines.

Finish

Reasoning Pathway (Manager)

1) Load inputs: Parse pCMV-PE6c FASTA

and REBASE 2024 enzymes.

Normalize enzyme rules: Expand [UPAC

to regex; process cut sites and strand

orientation.

Scan sequence: Scan both strands for cut

sites; classify enzymes as non-, single-, or

multi-cutters.

4) Annotate: Annotate each enzyme.

5) Output full non-cutter list, top cloning
picks, and visual maps.

2

3]

Tool Ocean Plan

1) REBASE parser

2) IUPAC-to-regex

3) Restriction site scanner

4) Non-cutter classifier + map
5) Type IIS filter

Dev Actions & Findings of the first pass

Parsed and verified the pCMV-PE6c
FASTA, loaded REBASE 2024, expanded
IUPAC codes, computed reverse
complements, and scanned for restriction
sites. Enzymes were classified, annotated,
and exported.

Thousands of enzymes are non-cutters due
to site length, Uscful non-cutters include
blunt, 5', and 3" overhangs. For Golden
Gate cloning, at least one Type IS enzyme
typically remains a non-cutter.

Critic Gaps

Ensure exact FASTA and REBASE 2024
match; validate cut sites and flag
methylation-sensitive regions.

Use Addgene 207853 sequence; highlight
single-cutters in maps while focusing on
non-cutters.

Self-Evolve (Template/Tool)

Template add: Load FASTA— 2) Load
REBASE—3)Normalize IUPAC + reverse-
complement — 4) Scan — 5) Split cutters/non-
cutters —6)Annotate— 7) Export tables+ plots.
—8)Surface best-in-class non-cutters by use-
case— 9) Provenance & gaps.
New tool spec:

striction_noncutters(...) identifies
enzymes in a plasmid with optional plots,
vendor tags, and Type IS panel.

Re-run Findings (with evolved plan/tool)

Outputs include release-matched
provenance, a Type IIS non-cutter panel,
application-based shortlists, and visual maps
highlighting cutter density and uniqueness.

Finish

Reasoning Pathway (Manager)

1) Retrieve PDB 3BDP structure from RCSB.
2) Isolate chain A and chain P.

3) Scan all atom-atom distances between
chains; record those < 4.0 A.

Classify interaction type: Hydrogen bond:
N/O-N/O/P <3.5 A; Hydrophobic: C-C <
4.0 A; Other: all remaining close contacts
5) Summarize: counts by type, top residue
pairs, and average distances.

Output: markdown table + counts; save
interacting-residue PDB.

4

6)

Tool Ocean Plan

1) PDB parser/chain extractor
2) Contact calculator

3) Distance cutoff classifier
4) Structure output Analyzer

Dev Actions & Findings of the first pass

* Downloaded and parsed PDB 3BDP using
Biopython. Extracted chain A (protein) and
chain P (DNA), computed all inter-chain
contacts within 4.0 A, and classified them
into H-bond (16), hydrophobic (10), and
other (80). Generated:

* Per-residue and residue-pair interaction stats

+ Filtered PDB with interacting residues only

+ Top 10 interacting residue pairs among 106
total contacts

Critic Gaps

* No backbone/sidechain separation—could
add orientation-based H-bond validation.

* Does not yet annotate biological relevance.

+ Could integrate sequence conservation for
interface residues.

Self-Evolve (Template/Tool)

Template add: 1)Fetch PDB — 2) Extract
chains — 3) Compute distances — 4) Classify
interactions — 5) Summarize & rank — 6)
Save interface PDB — 7) Optional
motif/sequence enrichment.

New tool spec:
pdb_protein_dna_interface(...) analyzes
protein-DNA contacts with optional
classification, JSON output, and PDB save.
Emits: interaction table, contact counts by
type, ranked residue pairs, PDB file of
interface.

Re-run Findings (with evolved plan/tool)

Generates full contact table, PyYMOL
session with H-bonds (yellow) and
hydrophobic contacts (grey), plus metadata
(PDB ID, chains, cutoff, tool version).

Finish

DepMap 25Q2 pipeline identifies Top-10 U20S-
specific genes via essential masking, lineage-
matched Z, and cross-tech concordance—focused
on cell cycle, DNA repair, chromatin, and p33,
with a reusable query tool for other lines.

Using pCMV-PE6c FASTA and REBASE 2024,
the pipeline identifies annotated non-cutters with
full TUPAC and offset handling, highlighting
overhangs, Type IIS enzymes, and methylation
flags—delivering maps and shortlists for cloning
design.

Protein-DNA interface analysis of 3BDP (chains
A-P) at 4.0 A reveals 106 contacts (16 H-bonds,
10 hydrophobic), with hotspots at THR556,
LYS551, ARGS578, and ASN625—highlighting
sequence-specific recognition and packaged as a
reusable analysis and PDB query tool.

Figure S1. Representative STELLA benchmark cases.

This figure presents four representative end-to-end tasks from the STELLA Tool Creation benchmark, illustrating the diversity
of biomedical problem types and the multi-stage reasoning—tool-refinement process. Each panel visualizes how STELLA
interprets the input, references external knowledge sources, adapts intermediate hypotheses, and iteratively converges toward a
final solution.

(a) DISEASES text-mining for Parkinson’s disease. This panel illustrates entity normalization across disease aliases,
extraction of gene—disease associations from the DISEASES database, and ranking of top gene candidates. The results are
contextualized with canonical PD biology and highlight limitations typical of text-mined resources, such as alias ambiguity and
evidence opacity.

(b) DepMap selective dependency analysis for U20S cells. This panel shows the integration of CRISPR (Chronos) and
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RNAi (DEMETER?2) gene-effect profiles for U20S cells, emphasizing stable gene—essentiality ranking and the mitigation of
technology-specific noise. It reflects cross-assay concordance and lineage-aware dependency interpretation.

(c) Restriction enzyme non-cutter identification for pCMYV-PE6c. This panel visualizes the identification of restriction
enzymes that do not cut within the pCMV-PE6¢ plasmid, incorporating REBASE annotation, enzyme classification, and
methylation sensitivity. The output supports cloning design by presenting a curated shortlist of reliable non-cutters.

(d) Protein—-DNA interface analysis for PDB 3BDP (chains A-P). This panel depicts structural contact profiling between
protein chain A and DNA chain P, highlighting key interacting residues and interaction types within a spatial proximity threshold.
The analysis identifies likely binding hotspots and facilitates downstream structural interpretation.

The STELLA benchmark comprises all 47 tasks across the defined categories. Full task specifications are provided as CSV
files, including task descriptions, inputs, expected outputs, and associated metadata. These files are hosted as supplementary
data rather than embedded within the main text.

As summarized in Table S2, we report the full task-level performance scores across all models.
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task_name_slug STELLA Biomni Claude 4 Opus DeepSeek-R1 GPT-40 GPT-5 OpenAl-03 Gemini 2.5 Pro Grok-4
1_kegg-pathway-complementcascade-extraction 3.795 3.091 3.629 3.667 3.133 3.958 3.437 3.954 3.279
2_kegg-pathway-neuroactiveligandreceptor 3.459 2.577 3.550 3.117 1.329 3.846 nan 3.125 3.296
3_disease-gene-cysticfibrosis-textmining 3.784 2.440 1.850 1.858 2.117 2.125 1.867 2.083 1.979
4 _disease-gene-association-parkinsonsdisease2 3.340 2.599 2.263 2.500 2.192 2.033 2.750 2.533 2.292
5_disease-gene-association-parkinsons-disease-text-mining 4.240 3.620 nan nan nan nan nan nan nan
6_string-protein-interaction-phb21 4.351 3.500 2.808 2.308 1.833 2.867 2.850 2.596 2.671
7 _protein-interaction-network-ncb0-string 4.591 2.505 3.612 3.317 1.767 3.721 3.596 3.604 2.521
8_go-gene-association-mitotic-spindle-checkpoint 4.805 2.887 3.921 3.908 3.737 3.946 3.933 3.792 3.908
9_essential-genes-u2os-depmapp 4.841 3.404 2.671 2271 1.825 2.550 2.358 2233 2.317
10_small-molecule-final-info 4.940 3.016 3.858 3.792 3.662 4.033 4.125 4.125 4.125
11_pubchem-structure-info 4.628 1.245 3.575 3.142 3.079 nan nan 3.333 3.371
12_201m-colorectal-cancer-gene-mapping 2.194 2425 3.042 2.454 2.163 nan nan 2.848 3.008
13_gsea-gene-set-lookup 4.075 2.549 1.879 2.071 1.625 nan nan 1.821 3.021
14_pcr-primer-design-targettm60-v2 3.196 2.907 4.021 3.663 3.625 3.483 nan 3.579 nan
15_per-primer-design-targettm60-4 4.307 3.761 3.392 2.308 1.529 3.092 nan nan nan
16_pcr-primer-design-targettm60-set2 4.404 4.169 3.004 3.042 2913 3.242 nan nan nan
17_per-primer-design-targettm55-set3 4.309 4.232 3.721 3.783 3.279 3.829 nan nan nan
18_per-primer-design-targettm65-set4 3.988 4.098 3.662 3.067 1.540 3.362 nan 1.275 nan
19_pcr-primer-design-targettm60-set5 3.508 2.890 4.000 3.733 3.271 4.017 nan 3.633 nan
20_pcr-primer-design-targettm60-set7 3.688 4.128 4.087 3.737 3.467 4.042 nan 2.767 nan
21 _restriction-digest-vector-aatil 1.350 2.681 2.675 2.368 2.454 2.275 3.004 2.600 2.717
22_cancer-gene-classification 4.110 2.482 3.475 2.771 2.517 3.238 2.933 3.371 nan
23_bwa-mem-alignment 3.192 4.061 3.879 3.754 3.654 3.675 3.946 3.662 3.621
24_macs2-peak-calling 4.874 1.437 3.996 3.871 3.396 3.888 3.942 3.742 3.312
25_chipgc-quality-assessment 4471 3.724 4.008 3.679 3.026 3.942 4.112 3.823 3.767
26_dreme-motif-analysis 2.925 3.385 4.050 3.792 3.392 3.900 3.892 3.933 3.933
27 _per-primer-design-targettm60 4.228 3.804 3.554 2.621 2.004 3.150 nan 3.271 nan
28_pcr-primer-design-onetag 4.256 3.293 3.754 2.604 2.629 3.646 3.267 4.079 nan
29 _restriction-digest-sacll-aatil 3.390 3.246 2.842 2.788 2.904 3.362 3.492 3.508 3212
30_restriction-digest-hhell-hindIIIf 4.852 3.180 3.800 3.212 3.213 3.150 3.425 3212 3.750
31_pcr-primer-design-targettm60-v3 3.650 3.213 3.992 3.167 3.017 3.787 nan nan 2.733
32_per-primer-design-targettm55-v4 4.865 4.148 3.304 2.754 2.100 2.875 nan nan nan
33_non-cutter-restriction-enzyme-identification-puc19 3.801 4.213 2.279 2.092 2.113 2.367 2.225 1.383 nan
34 _non-cutter-restriction-enzyme-identification-pcmv-pc6c 4.899 4.100 nan nan nan nan nan nan nan
35_per-g5-highfidelity 3.640 2.931 3913 3.963 3.600 4.133 4.154 4.108 4.079
36_gibson-assembly-twofragments 1.866 4.066 3.979 3.733 3.575 4.013 3.292 3.763 3.492
37_golden-gate-assembly-multi-insert 3.301 3.860 2.737 2.642 2.754 3.596 3.583 2.842 nan
38_lb-media-ingredient-calculation 4.007 4.049 4.025 4.029 4.100 4.029 3.983 4.017 4.008
39_giaprep-spin-miniprep-buffer-order 3.366 4.200 4.175 4.167 1.867 3.900 2.375 4.183 4.138
40_agarose-gel-electrophoresis-prep 3.767 4.139 4.046 3.954 3.508 3.954 4.021 3.854 4.071
41_bacterial-glycerol-stock-prep 4.959 3.022 2.588 2.067 1.817 1.867 2.250 2.150 2.129
42 _protein-concentration-amicon-filter 3.222 4.069 4.079 3.925 3.033 3.304 3.950 3.179 3.600
43_pdb-structure-analysis 3.861 3.790 1.792 1.487 1413 1.650 1.442 1.592 1.542
44 _pdb-chain-analysis 5.095 4.111 2.271 2.192 2.150 2.521 1.229 2.312 2.150
45_protein-dna-interaction-analysis 4.135 4.151 2275 2.300 1.883 2.450 2.300 2.258 2292
46_secondary-structure-analysis 4.087 4.190 2913 2.358 2.042 2.758 2.683 2.183 2.288
47 ligand-analysis 4.981 3.018 2.438 2.075 2.108 2.192 1.146 2.150 2.258
Mean + SD 4.006 3.331 3.265 2.982 2.604 3.245 3.077 2.985 3.053

Table S2. Tool Creation Benchmark results across tasks.
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You are STELLA, an advanced self-evolving biomedical research AI Agent. You solve complex scientific tasks
through intelligent tool selection/creation, template retrieval, and multi-agent collaboration.

CRITICAL PROTOCOLS

1. Mandatory Workflow: You MUST follow the "Strategic Task Progress" 7-step cycle for EVERY task.

2. State Persistence: You must display the updated checklist at the beginning of every "Thought".

3. Scientific Rigor: Prioritize pretrained models over writing code from scratch. Cite specific papers.

STRATEGIC TASK PROGRESS (The 7 Steps)

] Strategic Analysis - Analyze problem scope and requirements.

Resource Discovery - Search for existing solutions/papers.

Agent Coordination - Plan task delegation to specialized agents.

Tool Preparation - Load relevant tools for the team.

Task Execution - Delegate to dev_agent (coding) or tool_creation_agent.
Quality Assurance - critic_agent evaluates results.

System Evolution - Create new capabilities if gaps are identified.

S o U WwWN R

FEW-SHOT LEARNING EXAMPLE
Task: "Predict the fitness effect of the L455S mutation in the BRCALl protein using protein language models."

Thought:
Strategic Task Progress:

1. [->] Strategic Analysis - Analyzing protein mutation prediction requirements
2. [ ] Resource Discovery - Search for existing mutation prediction models

3. [ ] Agent Coordination - Plan delegation to dev_agent

4. [ ] Tool Preparation - Load relevant tools

5. [ ] Task Execution - Delegate computational work

6. [ ] Quality Assurance - critic_agent evaluation

7. [ ] System Evolution - Improve based on feedback

This is a protein mutation effect prediction task. I will search for existing approaches.
{{code_block_opening_tag}}

search_results = multi_source_search(query="protein mutation fitness prediction ESM models")
{{code_block_closing_tag}}

Observation: Found ESM-1v and Tranception models.

Thought:

Strategic Task Progress:

1. [x] Strategic Analysis

2. [x] Resource Discovery - Found ESM/Tranception

3. [->] Agent Coordination - Delegating to dev_agent
[Checklist continues]

Research shows ESM is SOTA. I will delegate implementation to dev_agent.
{{code_block_opening_tag}}

mutation_results = dev_agent (
task="Clone ESM-1v and predict fitness for BRCAl L455S...",
additional_args={"protein": "BRCAl", "mutation": "L4553"}

)
{{code_block_closing_tag}}
Observation: BRCAl L455S predicted fitness score: -2.3 (deleterious).

Thought:

I need to validate this with the critic_agent.

{{code_block_opening_tag}}

evaluation = evaluate_with_critic(current_result=mutation_results)
{{code_block_closing_tag}}

Observation: Critic suggests using an ensemble with Tranception for higher accuracy.

Thought:
Strategic Task Progress:

7. [->] System Evolution - Implementing ensemble approach

I will now implement the ensemble approach as suggested.
{{code_block_opening_tag}}

final answer ("The ensemble score is -2.1 (deleterious), validated by ClinvVar...")
{{code_block_closing_tag}}

AVAILABLE SPECIALIZED AGENTS

{%- for agent in managed_agents.values() %}

def {{ agent.name }} (task: str, additional_args: dict) -> str:
""m{{ agent.description }}"""

{% endfor %}

TOOL ARSENAL (Concise)

{%- for tool in tools.values() %}

def {{ tool.name }} (inputs) -> output:
""m{{ tool.description }}"""

{%$ endfor %}

START
You are STELLA. Begin research.
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Key Resources Table of NK Target Discovery

REAGENT or RE- SOURCE IDENTIFIER

SOURCE

Anti-Human CD56 BV421 BioLegend Cat# 318328, RRID:AB_11218798
(clone HCD56)

Anti-Human BTN3A1l PE BioLegend Cat# 383208, RRID:AB_3097513
(clone 34-7)

7-AAD BD Biosciences Cat# 559925, RRID:AB_2869266
Annexin V APC BD Biosciences Cat# 550474, RRID:AB_2868885
Anti-Human CD107a FITC BioLegend Cat# 328606, RRID:AB_1186036
(clone H4A3)

Table S3. Key Resources Table. Antibodies used for flow cytometry experiments.
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STR-catalyzed Reaction of Secologanin with Tryptamine

Strictosidine synthase (STR) catalyzes the pivotal Pictet-Spengler condensation that initiates the biosynthetic cascade leading to
terpenoid indole alkaloids (TIAs). As shown in Fig. S2, STR from Rauvolfia serpentina (RsSTR) converts tryptamine and the
monoterpene secologanin into strictosidine, the universal precursor to a wide range of pharmaceutically valuable TIAs, including
anticancer agents such as vinblastine, vincristine, and irinotecan. This transformation represents the major rate-limiting step in
TIA biosynthesis, and its efficiency largely determines metabolic flux through the pathway. Consequently, understanding the
catalytic mechanism of STR and developing improved STR variants are central goals for enhancing strictosidine production and
enabling more effective engineering of TIA biosynthetic pathways.

0. 0OGlc

I

H

tryptamine secologanin (S)-strictosidine

Figure S2. Reaction of secologanin with tryptamine catalyzed by STR from Rauvolfia serpentina (RsSTR).

26/36



Gene Sequence and Vector Design for RsSTR

Native Amino Acid Sequence (Without Signal Peptide)
SPILKEILIEAPSYAPNSFTFDSTNKGFYTSVQDGRVIKYEGPNSGFVDFAYASPYWNKAFCENSTDAEKRPL
CGRTYDISYNLQNNQLYIVDCYYHLSVVGSEGGHATQLATSVDGVPFKWLYAVIVDQRTGIVYFTDVSTLYDD

RGVQQIMDTSDKTGRLIKYDPSTKETTLLLKELHVPGGAEVSADSSEVLVAEFLSHQIVKYWLEGPKKGTAEV

LVKIPNPGNIKRNADGHFWVSSSEELDGNMHGRVDPKGIKFDEFGNILEVIPLPPPFAGEHFEQIQEHDGLLY
IGTLFHGSVGILVYDKKGNSFVSSH=*

Codon-Optimized DNA Sequence for E. coli
AGCCCGATTCTGAAAGAAATTCTGATTGAAGCACCGAGCTATGCACCGAATAGCTTTACCTTTGATAGCACC
AACAAAGGCTTTTATACCAGCGTTCAGGATGGTCGTGTTATCAAATATGAAGGTCCGAATAGCGGCTTTIGTG
GATTTTGCCTATGCAAGCCCGTATTGGAATAAAGCCTTTTGTGAAAATAGCACCGATGCCGAAAAACGTCCG
CTGTGTIGGTCGTACCTATGATATTAGCTATAATCTGCAGAACAACCAGCTGTATATCGTGGATTGTTATTAT
CATCTGAGCGTTGTTGGTAGCGAAGGTGGTCATGCAACCCAGCTGGCAACCAGCGTTGATGGTGTTCCGTTT
AAATGGCTGTATGCAGTTACCGTTGATCAGCGTACCGGTATTIGTGTATTTTACCGATGTTAGCACCCTGTAT
GACGATCGTGGTGTGCAGCAGATTATGGATACCAGCGATAAAACCGGTCGTCTGATTAAATACGATCCGAGC
ACCAAAGAAACCACCCTGCTGCTGAAAGAACTGCATGTTCCGGGTGGTGCAGAAGTTAGCGCAGATAGCAGC
TTTGTTCTGGTTGCCGAATTTCTGAGCCATCAGATTGTGAAATATTGGCTGGAAGGTCCTAAAAAAGGCACC
GCAGAAGTTCTGGTTAAAATTCCGAATCCGGGTAACATTAAACGTAATGCCGATGGTCATTTTTGGGTTAGC
AGCAGCGAAGAACTGGATGGTAATATGCATGGTCGCGTTGATCCGAAAGGCATTAAATTCGATGAATTTGGC
AACATCCTGGAAGTTATTCCGCTGCCTCCGCCTTTTGCCGGTGAACATTTTGAGCAGATTCAAGAACATGAT
GGCCTGCTGTATATTGGCACCCTGTTTCATGGTAGCGTTGGTATTCTGGTGTATGATAAAAAAGGTAACAGC
TTTGTGAGCAGCCACTAA

Table S4. Plasmid Vector and Restriction Sites

Abbreviation Organism GenBank Accession Vector / Restriction Sites

RsSTR Rauvolfia serpentina CAA44208.1 pCold II (Ndel, HindIII)

Note: GenBank accession numbers correspond to NCBI reference sequences.
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Table S5. PCR Primers for RsSTR Mutagenesis. The reverse primers for each mutation site are identical within that site.

Nucleotides shown in lowercase represent the mismatched bases introduced to generate the specific mutations.

Variant

Primer

Sequence (5’-3’)

WT

W149F

V176X

1179V

M180X

G210X

F226L

P253V

E271X

M276X

E306X

H307X

Forward
Reverse

Forward
Reverse

Forward
Forward
Forward
Forward
Forward
Forward
Reverse

Forward
Reverse

Forward
Forward
Forward
Reverse

Forward
Forward
Forward
Forward
Forward
Reverse

Forward
Reverse

Forward
Reverse

Forward
Forward
Forward
Forward
Forward
Forward
Reverse

Forward
Forward
Forward
Reverse

Forward
Forward
Forward
Forward
Forward
Forward
Reverse

Forward
Forward
Reverse

TGCATCATCATCATCATCATATGAGCCCGATTCTGAAAG

GACTGCAGGTCGACAAGCTTCTAGTGGCTGCTCACAAAGCTG

GTTGATGGTGTTCCGTTTAAAtttCTGTATGCAGTTACCG
ATTTAAACGGAACACCATCAACGCTGGTTGCCAGCTG

CCCTGTATGACGATCGTGGTttCAGCAGATTATGGATA
CCCTGTATGACGATCGTGGTaaaCAGCAGATTATGGATA
CCCTGTATGACGATCGTGGTctgCAGCAGATTATGGATA
CCCTGTATGACGATCGTGGTcaaCAGCAGATTATGGATA
CCCTGTATGACGATCGTGGTcgtCAGCAGATTATGGATA
CCCTGTATGACGATCGTGGTtggCAGCAGATTATGGATA
CCACGATCGTCATACAGGGTGCTAACATCGGTAAAATA

CGATCGTGGTGTGCAGCAGgtgATGGATACCAGCGA
GCTGCACACCACGATCGTCATACAGGGTGCTAAC

CGTGGTGTGCAGCAGATTtttGATACCAGCGATAAA
CGTGGTGTGCAGCAGATTattGATACCAGCGATAAA
CGTGGTGTGCAGCAGATTtatGATACCAGCGATAAA
AATCTGCTGCACACCACGATCGTCATACAGGGTG

CTGAAAGAACTGCATGTTCCGgcgGGTGCAGAAGTTAG
CTGAAAGAACTGCATGTTCCGctgGGTGCAGAAGTTAG
CTGAAAGAACTGCATGTTCCGagcGGTGCAGAAGTTAG
CTGAAAGAACTGCATGTTCCGacgGGTGCAGAAGTTAG
CTGAAAGAACTGCATGTTCCGgtgGGTGCAGAAGTTAG
GGAACATGCAGTTCTTTCAGCAGCAGGGTGGTTTC

GCAGCTTTGTTCTGGTTGCCGAActgCTGAGCCATCAG
GGCAACCAGAACAAAGCTGCTATCTGCGCTAACTTCTG

GTTCTGGTTAAAATTCCGAATgtgGGTAACATTAAACG
CGGAATTTTAACCAGAACTTCTGCGGTGCCTTTTTT

TTGGGTTAGCAGCAGCGAAgatCTGGATGGTA
TTGGGTTAGCAGCAGCGAAattCTGGATGGTA
TTGGGTTAGCAGCAGCGAActgCTGGATGGTA
TTGGGTTAGCAGCAGCGAAaatCTGGATGGTA
TTGGGTTAGCAGCAGCGAAcgtCTGGATGGTA
TTGGGTTAGCAGCAGCGAAaaaCTGGATGGTAA
CGCTGCTGCTAACCCAAAAATGACCATCGGC

GCGAAGAACTGGATGGTAATttCATGGTCGCGTTGAT
GCGAAGAACTGGATGGTAATctgCATGGTCGCGTTGAT
CGAAGAACTGGATGGTAATcgtCATGGTCGCGTTGAT
TACCATCCAGTTCTTCGCTGCTGCTAACCCAAAA

TGCCTCCGCCTTTTGCCGGTtttCATTTTGAGCA
TGCCTCCGCCTTTTGCCGGTattCATTTTGAGCA
TGCCTCCGCCTTTTGCCGGTctgCATTTTGAGCA
TGCCTCCGCCTTTTGCCGGTagcCATTTTGAGCA
TGCCTCCGCCTTTTGCCGGTaccCATTTTGAGCA
TGCCTCCGCCTTTTGCCGGTgtgCATTTTGAGCA
GGCAAAAGGCGGAGGCAGCGGAATAACTTCCA

CTCCGCCTTTTGCCGGTGAAttTTTGAGCAGATTCA
CTCCGCCTTTTGCCGGTGAAcgtTTTGAGCAGATTCA
TCACCGGCAAAAGGCGGAGGCAGCGGAATA
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Table S6. Reaction conditions for the amplification of STR DNA via PCR.

Component Volume (¢L) Final concentration
2x SuperPfx MasterMix 25 Ix

Primer forward (10 uM) 2.5 0.5 uM

Primer reverse (10 uM) 2.5 0.5 uM

Template 1 50 ng/uLL

ddH,O 19 —

Final volume 20 —

Table S7. Cycling conditions for the amplification of STR DNA via PCR.

Step Cycles Temperature (°C) Time (s)
Initial denaturation 1 95 300
Denaturation 35 95 30
Annealing 35 58 30
Extension 35 72 180
Final extension 1 72 360
Hold 1 4 00

Table S8. HPLC method characteristics for the analysis of STR reaction products.

Parameter Condition
Flow rate 1 mL/min
Detection UV at 280 nm
Run time 15 min

Oven temperature 30 °C
Injection volume 10 uL
Solvent system MeCN (containing 0.1% TFA) / NH4COOH (30 mM, pH 2.8)
Gradient 10:90 — 50:50 within 8 min;
50:50 — 80:20 within 3 min;
80:20 — 10:90 within 0.5 min;
hold at 10:90 for 3.5 min
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Table S9. HPLC peak area (first-round variants)

Variant HPLC peak area | HPLC peak area2 HPLC peak area 3

WT 150.5 276.9 257.5
W149F 0 0 0
V176W 147.6 423 42.1
V176R 0 0 0
V176Q 16.8 19.9 19.9
V176L 29.9 36.2 35.7
V176K 0 0 0
P253v 0 0 0
M276R 258.9 448.5 347.6
M276F 41.6 50.7 50.6
M180Y 0 0 5.5
M180I 19.7 23.8 36.2
M180F 30.7 454 50.6
1179V 18.4 29.5 18.8
H307R 0 0 0
H307F 0 17.5 15.3
G210V 0 0 0
G210T 0 0 0
G210L 0 0 0
G210A 7.4 5.6 0
F226L 53 5.7 8
E306V 41.7 45.2 42.2
E306R 35.2 73.7 73.8
E306L 23 69.4 68.4
E306I 28.5 332 23.7
E306F 359 45.9 56.7
E271R 0 6.1 10.5
E271N 20.6 20.8 21.7
E271K 0 0 53
E2711 0 0 0
E271D 17.2 9.1 21

Table S10. HPLC peak area (second-round variants)

Variant HPLC peak areal HPLC peak area2 HPLC peak area 3

WT 152.5 259.5 273.9
V176F 359.2 230.7 411.8
M276L 516.1 4427 481.6
G210S 0 0 0
E306T 47.9 101.7 101
E306S 45 53.7 68
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Molecular Dynamics Analysis of Optimized Enzyme

Protein and Ligand Preparation

The crystal structure of Rauvolfia serpentina strictosidine synthase (STR) in complex with tryptamine (PDB ID: 2FPB) was used
as the initial model. All point mutations investigated in this study (V176F, M276L, and M276R) were introduced individually
using PyMOL, followed by local backbone/side-chain optimization in Schrodinger Protein Preparation Wizard. Hydrogen
atoms were added according to physiological protonation states at pH 7.0, and crystallographic water molecules within the
catalytic pocket were retained to preserve native hydrogen-bonding networks.

Reference Pose Generation for (S)-strictosidine

To obtain an experimentally consistent binding orientation, the structures of STR-tryptamine complexes (PDB IDs: 2FPB
and 2FPC) were aligned. The bound conformation of (S)-strictosidine extracted from 2FPC was adopted as a reference pose.
During docking, positional restraints (3 A tolerance) were applied to maintain the substrate geometry relative to tryptamine.

Molecular Docking

Induced-fit docking (IFD) was performed in Schrodinger, allowing side-chain flexibility within 5A of the catalytic pocket. The
docking grid box was generated using the size of the reference ligand (from 2FPC). Tryptamine was fixed in the binding site,
while (S)-strictosidine was redocked using the constrained protocol.

Molecular Dynamics Simulations

Docking complexes were subjected to explicit solvent MD simulations using the AMBERO99 force field for proteins and the GAFF
force field for small molecules. The process included defining the box, solvating, energy minimization, heating, equilibration,
and production. After neutralization by the addition of explicit counter ions (Na* or C1~) and energy minimization, a 500ps NVT
(constant temperature, constant volume) ensemble was performed to thermalize the systems to 300 K under constant volume and
periodic boundary conditions. Then, a 500ps NPT (constant temperature, constant pressure) ensemble was performed at an
isotropic constant pressure of 1bar and temperature of 300K with a 2.0 ps time constant using the Parrinello-Rahman pressure
coupling algorithm. Finally, a 100ns MD simulation was carried out under periodic boundary conditions with an integration
time step of 2fs. Each mutation (V176F, M276L, M276R) was simulated in triplicate, starting from different random velocity
seeds to ensure statistical robustness. RMSD, RMSF, and R, analyses confirmed system equilibration before free-energy
calculations.

Binding Free Energy Calculations

Binding free energy calculations were performed using gmx _MMPBSA v1.6.2, which implements the Amber MM/PBSA protocol
on GROMACS trajectories. The trajectories obtained from the 100ns production MD simulations were analyzed using a
single-trajectory approach, in which the protein, ligand, and complex coordinates were extracted from the same MD trajectory
to minimize structural inconsistencies between states. Frames from 20-100 ns were used for MM/PBSA analysis. Given a 10ps
trajectory sampling rate, this corresponds to analyzing 800 evenly spaced snapshots, ensuring statistically robust free energy
estimates. The ligand parameters were taken from the GAFF parameterization used during MD simulation (AM1-BCC charges).
The bondi (mbondi2-like) PB radii set (option 4) was used for Poisson-Boltzmann calculations. All free energy calculations
were performed at 298.15K, consistent with the MD simulation temperature. MM/PBSA decomposes the binding free energy
according to:

AGhying = AEMM + AG solvation(PB) + AG solvation(nonpolar) ()

where AEMM includes bonded, van der Waals, and electrostatic interactions; PB solvation energy is computed using the
Poisson-Boltzmann equation; and the nonpolar contribution is estimated from the solvent-accessible surface area (SASA).
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Figure S3. Backbone RMSD (ns) for WT versus variants (V176F, M276R, M276L). Each panel compares one variant to W'T;

solid lines show the mean across replicates and the shaded bands indicate the standard deviation. RMSD traces are lightly
smoothed (21-point moving average) for visualization only.
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Figure S4. Per-residue RMSF for WT versus variants (V176F, M276R, M276L). Each panel compares one variant to WT,
solid lines show the mean across replicates and the shaded bands indicate the standard deviation.
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Figure S5. Radius of gyration (R, ns axis on the trajectories) for WT versus variants (V176F, M276R, M276L). Each panel
compares one variant to WT; solid lines show the mean across replicates and the shaded bands indicate the standard deviation.

Trajectory Analyses (RMSD, RMSF, and Radius of Gyration)
We assessed the stability and flexibility of wild-type (WT) and optimized variants by analyzing the protein backbone RMSD,
per-residue RMSF, and the radius of gyration (R,) over production trajectories. For each system, replicate simulations were
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aggregated by computing the mean trace with a semi-transparent band indicating the standard deviation.

Across systems, the backbone RMSD of the variants is comparable to that of WT, showing stable plateaus after equilibration
and no evidence of excessive drift (Figure S3). Likewise, the per-residue RMSF profiles are broadly similar between variants
and WT, with only minor, localized differences near engineered regions (Figure S4). By contrast, the radius of gyration
is consistently lower for the variants than for WT (Figure SS5), indicating a slightly more compact ensemble. Such modest
compaction—together with preserved global stability—suggests reduced conformational heterogeneity and improved active-site
pre-organization, providing a plausible dynamic basis for the higher catalytic activity observed for the variants relative to WT.
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Figure S6. The overview of digital instruments and devices for virtual lab.

VLA Training and Tasks

Simulation Environment and Data Preparation
To set up a high-fidelity environment for STELLA-VLA and baseline training, we extend asset modeling, physics simulation,
and rendering capabilities specifically for biological primitives.

Asset Generation Pipeline. We construct dimensionally accurate digital models of laboratory assets (categorized into
Instruments, Containers, Racks, and Robots) through a multi-stage workflow.

1. Reconstruction: We capture multi-view video of real-world instruments and utilize 3D Gaussian Splatting (3DGS) and
the PGSR algorithm to reconstruct high-quality visual assets.

2. Refinement: Coarse meshes extracted from 3DGS are refined in CAD software to optimize topology for simulation
while preserving critical geometric features and articulating joints.

3. Standardization: Refined models are UV-unwrapped with baked vertex colors and converted into the MJCF modeling
language via a custom glt £2mjcf converter to define collision characteristics and physical properties.

Physics and Rendering Fidelity. Standard physics engines often lack the granularity required for lab equipment. We
developed a suite of MuJoCo plugins to simulate specialized mechanisms prevalent in biology, including threads, detents,
eccentric motion, and quasi-static liquid computation. Visually, we address the challenge of transparent materials (e.g.,
glassware) by integrating Blender’s Physically Based Rendering (PBR) pipeline, ensuring accurate refraction and reflection.
Furthermore, we implement dynamic texture rendering for instrument screens, enabling the simulation of interactive digital Uls
essential for VLA tasks.

Evaluation Tasks
We evaluate the model on four distinct biological manipulation tasks.

Scoring Metric. All tasks are scored binarily (1 for success, O for failure) with the exception of the Operate thermal mixer
panel task. Due to the complexity of continuous value adjustments, this task utilizes a relative progress score to better reflect
performance differences across policy iterations.

Transfer centrifuge tube
Instruction: “Pick up the centrifuge tube and move it to the other rack, row {target_row}, column {target_col}.”
Description: Requires the robot (URS5e-Robotiq) to perform precise pick-and-place manipulation. The agent must
visually identify the correct tube and interpret language instructions to locate a randomized target rack slot.
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Operate thermal mixer panel
Instruction: “Adjust thermal mixer parameters, with speed set to {set_rpm} rpm, temperature set to {set_temp} °C, and
time set to {set_time} seconds.”
Description: Involves fine-grained interaction with a digital interface. The agent must read the current UI state via vision,
interpret the target values from the instruction, and manipulate the touchscreen to adjust time, temperature, and frequency.
Parameters are randomized to test cross-modal numerical reasoning.

Load centrifuge rotor
Instruction: “Insert a second centrifuge tube into the slot that is symmetrically opposite to the currently placed tube.”
Description: Tests advanced geometric reasoning and precise positioning. The agent must perceive the location of a
pre-existing tube within a centrifuge rotor and load a new tube into the symmetrically opposite slot to ensure balance.
Both the rotor angle and the initial tube position are randomized.

Aspirate with pipette
Instruction: “Dual-URSe pipetting: one arm lifts centrifuge tube, the other aligns pipette tip and aspirates liquid.”
Description: A bi-manual task requiring high-level coordination between a holder arm (UR5e-Robotiq) and an actuator
arm (URSe-DexHand). The agent must stabilize the tube and precisely align the pipette tip to aspirate a specific volume
of liquid. Liquid volumes are randomized to evaluate visual liquid-level sensing capabilities.

STELLA Training Algorithm

The training pipeline for STELLA is formalized in Algorithm 1. We denote the VLA policy as mg, parameterized by 6, and
initialize an empty replay buffer . For a high-level task instruction 7', the system first generates a sequence of interpretable
subtasks S = {s1,...,sn}. During the execution of each subtask s;, the policy generates a rollout trajectory 7,o70ur- A set of
multimodal verifier tools, denoted as V), acts as the monitoring mechanism to detect execution failures. Upon detection of an
error, the system interrupts the nominal policy and queries the recovery tools R to select an appropriate recovery policy m,ec. If
the resulting corrective trajectory 7,.. successfully resolves the error, it is aggregated into D alongside successful nominal
rollouts. The policy parameters 6 are then updated via supervised fine-tuning on the enriched dataset D, allowing the VLA to
iteratively internalize robust recovery behaviors.
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Algorithm 1 STELLA: Iterative Decompose-Monitor-Recover VLA Training

Require: Initial VLA Policy my, Task Instruction 7', Verifier Tools V', Recovery Tools R, Replay Buffer D
Ensure: Improved VLA Policy mg+
0: Initialize D « 0
0: for iteration k =1,...,K do
0:  {Phase 1: Decompose}
Subtasks S = {s1, 52,...,5n5} < Decompose(T)
for subtask s; in S do
{Phase 2: Execution & Monitor}
Execute 7y (s;) to generate trajectory Tro/iour
status < Verify (T, o110ur» 5i» V) {Multimodal error detection}
if status is FAILURE then
{Phase 3: Recover}
Select recovery policy .. € R based on failure type
Execute 7, to generate corrective trajectory Ty
if 7,0 1s Success then
D — DU{(si,Trec)} {Add corrective data}
State x « Final state of 7,... {Resume from corrected state }
else
break episode {Recovery failed, abort task }
end if
else
D — DU{(si,Trotiour) } {Add successful nominal data}
end if
end for
{Phase 4: VLA Finetuning}
0 « Train(ng, D) {Gradient updates on aggregated data}
0: end for
0: return g =0

LRI
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