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ABSTRACT

The rapid adoption of generative AI (GenAI) in biotechnology offers immense potential but also raises serious safety concerns.
AI models for protein engineering, genome editing, and molecular synthesis can be misused to enhance viral virulence, design
toxins, or modify human embryos, while ethical and policy discussions lag behind technological advances. This Correspondence
calls for proactive, built-in, AI-native safeguards within GenAI tools. With more research and development, emerging AI safety
technologies—watermarking, alignment, anti-jailbreak methods, and unlearning—can complement governance policies and
provide scalable biosecurity solutions. We also stress the global community’s role in researching, developing, testing, and
implementing these measures to ensure the responsible GenAI deployment in biotechnology.

1 Biosecurity threats of GenAI in biosciences
GenAI is changing biotechnology research, accelerating drug discovery, protein design, and synthetic biology. It also enhances
biomedical imaging, personalized medicine, and lab automation, enabling faster and more efficient scientific advancements.
However, these breakthroughs have also raised biosecurity concerns, prompting policy and community discussions1–4.

The power of GenAI lies in its ability to generalize from known data to the unknown. Deep generative models can predict
novel biological molecules that may not resemble existing genome sequences or proteins. This capability introduces dual-use
risks and serious biosecurity threats—such models could potentially bypass the established safety screening mechanisms used
by nucleic acid synthesis providers5, which presently rely on database matching to identify sequences of concerns6. AI-driven
tools could be misused to engineer pathogens, toxins, or destabilizing biomolecules, while AI science agents could amplify
risks by automating experimental designs7.

The research community has recognized biosecurity dangers for over twenty years8, but AI amplifies and accelerates them.
Baker and Church warned that “protein-design technology is vulnerable to misuse for producing dangerous biological agents”
and “gene sequence and synthesis data should be collected and stored in repositories that are only queried in emergencies”1.
Further, a community of scientists signed on to a set of guiding principles in Fall 2024 to “ensure that this technology develops
in a responsible and trustworthy manner and that it is safe, secure, and beneficial for all”. The creators of the genome foundation
model Evo acknowledged its dual-use potential, stating that while it could aid therapeutic discovery, it might also facilitate
the development of harmful synthetic microorganisms9. Similarly, the developers of CRISPR-GPT10 raised concerns about
AI-driven gene editing being misused for modifying viruses or human embryos.

General-purpose AI safety has garnered considerable attention from researchers4, yet AI biosecurity remains a largely
underexplored area. The challenges posed by GenAI in biotechnology are unique due to the dual-use nature of biotechnological
applications, the high stakes of genetic and biological manipulation, and a critical lack of cross-disciplinary expertise in both AI
safety and biosciences. The complex, domain-specific nature of biotechnological research, combined with limited awareness of
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Figure 1. Generative AI-driven biosecurity challenges and emerging AI safeguard technologies. AI foundation models
can generate novel biologics—including protein structures, DNA/RNA sequences, and biomarkers—beyond known data,
potentially bypassing traditional safety screening. This heightens dual-use risks and privacy concerns, while AI agents further
amplify threats by automating research and experimentation. To mitigate these risks, we advocate for built-in AI safeguards
such as unlearning, watermarking, safety alignment, and AI agent defenses. Addressing these challenges requires
community-wide efforts, including benchmarking, red-teaming, and interdisciplinary collaboration to ensure the responsible
deployment of AI in the bioeconomy.

its potential risks, further exacerbates these vulnerabilities.

2 Call for built-in AI safety solutions for biosecurity
Today, many AI developments in biotechnology remain unsafeguarded, exposing serious risks. Closing this gap demands
immediate, coordinated action—integrating technical safeguards, fostering global collaboration, and enacting robust policies to
ensure responsible innovation in biotechnology.

Technical, built-in safeguards are one approach that could potentially mitigate the misuse risk of AI tools trained on biology.
Such safeguards must be proactive, scalable, and effective in countering dual-use risks and malicious exploitation, without
significant eroding the beneficial performance of the model. A number of emerging AI safety technologies hold promise but
require further research and developments for appropriate biosecurity applications. First, watermarking – the embedding of
imperceptible patterns within AI-generated biological designs – enables reliable tracing and auditing of the generated outputs.
For example, FoldMark11 applies watermarking to protein generative models like AlphaFold and RFDiffusion via embedding up
to 32-bit identity tracing codes in the model’s output, ensuring traceability in AI-designed proteins. Second, safety alignment
can train models to avoid generating harmful responses when prompted with malicious queries. Alignment of foundation
models is typically achieved via model-level finetuning or training-free controlled decoding. For instance, preference-optimized
language models can be aligned to avoid generating pathogenic DNA sequences12, preventing AI from inadvertently assisting in
the design of biological threats. Third, removing specific harmful or private knowledge from pre-trained AI models through
unlearning prevents them from generating dangerous biological constructs. For instance, if a model has been trained to optimize
toxin synthesis, targeted unlearning can erase this capability while preserving its utility for beneficial applications13. Fourth, AI
systems, such as large language models, must be robust against users’ attempts to bypass safety restrictions. Anti-jailbreak may
require strong reasoning abilities of large language models to accurately infer the intention of malicious users. In biosecurity,
this involves training models to recognize and reject prompts that attempt to exploit weaknesses in AI-driven protein/DNA
synthesis tools. Fifth, integrating autonomous AI agents into safety frameworks enables real-time monitoring and rapid response
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to anomalous behavior. For example, the agent defense layer in CRISPR-GPT10 filters illegal queries or issues warnings
when users attempt to generate hazardous biological sequences. Multiple AI agents can collaborate to cross-verify outputs,
detect emerging threats, and enforce corrective measures, ensuring that any potential misuse is promptly contained. Lastly,
cryptographic technologies have the potential to integrate AI safeguards into remote devices14, ensuring unbreakable links
between safety screening and physical synthesis. Together, these approaches form a framework for technical biosecurity
safeguards that complement governance and screening policies.

While awareness of biosecurity risks in this field is growing, we are still in the early stages. The necessary AI technologies
remain largely conceptual and under-developed, and current models lack protections. Adding built-in AI safeguards could raise
costs and reduce performance – an important tradeoff that must be analyzed through the development and integration of these
approaches. Community efforts are urgently needed to develop these safeguards and assess their impact on the bioeconomy.

3 Call for community efforts
Beyond technological advancements, we call for the development of standardized benchmarks and systematic red-teaming
practices to evaluate and improve AI safety measures. For example, AI-driven benchmarks for identifying unsafe genome
sequences are essential. These benchmarks shall be dynamic, and they will enable practitioners to move beyond traditional
database matching toward proactive risk prediction. Additionally, robust biosafety prompt benchmarks should be developed to
evaluate large language models’ responses to misuse requests. These benchmarks should cover diverse biological domains and
threat scenarios, reflecting real-world challenges and ensuring practical, reliable defenses.

Red teaming, involving adversarial testing by experts, is crucial for uncovering vulnerabilities in AI systems. Simulated
attacks or misuse attempts during training help strengthen model resilience. We advocate for community-driven red teaming
efforts that engage interdisciplinary researchers to simulate potential misuse cases and improve model robustness. Establishing
a shared repository of test cases and threat models would accelerate learning and response capabilities across biotechnology and
AI safety.

The integration of GenAI into biotechnology demands urgent collaboration between AI researchers, scientists, and security
experts to preempt dual-use risks. We argue that built-in technical guardrails—spanning model-level constraints, decoding
filters, and agent-level defenses—may be a critical approach to ensuring AI tools, such as protein designers or DNA synthesizers,
cannot be co-opted for harm. To operationalize this vision, we advocate for three priorities: advancing AI safety research
tailored to biology foundation models, establishing standardized risk assessments for AI-bio tools, and developing global
monitoring systems to detect emerging threats. By improving our understanding, development, and integration of built-in
safeguards in AI-bio tools alongside governance strategies, the biotechnology community can harness the benefits of GenAI
while mitigating its biosecurity risks.

References
1. Baker, D. & Church, G. Protein design meets biosecurity (2024).
2. Bloomfield, D. et al. Ai and biosecurity: The need for governance. Science 385, 831–833 (2024).
3. Blau, W. et al. Protecting scientific integrity in an age of generative ai (2024).
4. Bengio, Y., Mindermann, S. & Privitera, D. International ai safety report 2025 (2025).
5. Wittmann, B. J. et al. Toward ai-resilient screening of nucleic acid synthesis orders: Process, results, and recommendations.

bioRxiv 2024–12 (2024).
6. Office of Science and Technology Policy. Framework for nucleic acid synthesis screening. Tech. Rep., Office of Science

and Technology Policy (OSTP), Executive Office of the President (2024). URL https://aspr.hhs.gov/S3/
Documents/OSTP-Nucleic-Acid-Synthesis-Screening-Framework-Sep2024.pdf. Hosted by the
Administration for Strategic Preparedness and Response (ASPR).

7. Boiko, D. A., MacKnight, R., Kline, B. & Gomes, G. Autonomous chemical research with large language models. Nature
624, 570–578 (2023).

8. Church, G. Synthetic biohazard non-proliferation proposal. https://arep.med.harvard.edu/SBP/Church_
Biohazard04c.htm (2004). Accessed: March 19, 2025.

9. Nguyen, E. et al. Sequence modeling and design from molecular to genome scale with evo. Science 386, eado9336 (2024).
10. Huang, K. et al. Crispr-gpt: An llm agent for automated design of gene-editing experiments. arXiv preprint arXiv:2404.18021

(2024).
11. Zhang, Z. et al. Foldmark: Protecting protein generative models with watermarking. bioRxiv (2024).

3/5

https://aspr.hhs.gov/S3/Documents/OSTP-Nucleic-Acid-Synthesis-Screening-Framework-Sep2024.pdf
https://aspr.hhs.gov/S3/Documents/OSTP-Nucleic-Acid-Synthesis-Screening-Framework-Sep2024.pdf
https://arep.med.harvard.edu/SBP/Church_Biohazard04c.htm
https://arep.med.harvard.edu/SBP/Church_Biohazard04c.htm


12. Rafailov, R. et al. Direct preference optimization: Your language model is secretly a reward model. Advances in Neural
Information Processing Systems 36, 53728–53741 (2023).

13. Liu, S. et al. Rethinking machine unlearning for large language models. Nature Machine Intelligence 1–14 (2025).
14. SecureDNA Foundation. Securedna: Free, secure dna synthesis screening platform. https://securedna.org/

(2025). Accessed: March 19, 2025.

4/5

https://securedna.org/


Competing interests
Z.Z., A.S.B., A.V., S.G., S.L., S.C., M.B., and J.M. have no competing interests. E.X. has equity in GenBio AI. G.C. has biotech
patents and equity in companies: arep.med.harvard.edu/t/. M.W., L.C., Y.Q. invented some of the technologies
mentioned in the paper, with patent applications filed by Princeton University and Stanford University. L.C. is a Scientific
Advisor to Acrobat Genomics and Arbor Biotechnologies.
Disclaimer: Certain tools and software are identified in this paper to foster understanding. Such identification does not imply
recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the tools and
software identified are necessarily the best available for the purpose.

5/5

arep.med.harvard.edu/t/

	Biosecurity threats of GenAI in biosciences
	Call for built-in AI safety solutions for biosecurity
	Call for community efforts
	References

